
8

Parallel Algorithms

Consider a program that performs the following computation:
1 y = f(x)
2 z = g(x)

In this example, the function g(x) does not depend on the result of the
function f (x), and therefore the two functions could be computed inde-
pendently and in parallel.

Often large problems can be divided into smaller computational prob-
lems, which can be solved concurrently (“in parallel”) using different pro-
cessing units (CPUs, cores). This is called parallel computing. Algorithms
designed to work in parallel are called parallel algorithms.

In this chapter, we will refer to a processing unit as a node and to the
code running on a node as a process. A parallel program consists of
many processes running on as many nodes. It is possible for multiple
processes to run on one and the same computing unit (node) because of
the multitasking capabilities of modern CPUs, but that is not true parallel
computing. We will use an emulator, Psim, which does exactly that.

Programs can be parallelized at many levels: bit level, instruction level,
data, and task parallelism. Bit-level parallelism is usually implemented in
hardware. Instruction-level parallelism is also implemented in hardware
in modern multi-pipeline CPUs. Data parallelism is usually referred to as



326 annotated algorithms in python

SIMD. Task parallelism is also referred to as MIMD.

Historically, parallelism was found in applications in high-performance
computing, but today it is employed in many devices, including common
cell phones. The reason is heat dissipation. It is getting harder and harder
to improve speed by increasing CPU frequency because there is a physical
limit to how much we can cool the CPU. So the recent trend is keeping
frequency constant and increasing the number of processing units on the
same chip.

Parallel architectures are classified according to the level at which the
hardware supports parallelism, with multicore and multiprocessor com-
puters having multiple processing elements within a single machine,
while clusters, MPPs, and grids use multiple computers to work on the
same task. Specialized parallel computer architectures are sometimes
used alongside traditional processors for accelerating specific tasks.

Optimizing an algorithm to run on a parallel architecture is not an easy
task. Details depend on the type of parallelism and details of the archi-
tecture.

In this chapter, we will learn how to classify architectures, compute run-
ning times of parallel algorithms, and measure their performance and
scaling.

We will learn how to write parallel programs using standard program-
ming patterns, and we will use them as building blocks for more complex
algorithms.

For some parts of this chapter, we will use a simulator called PSim, which
is written in Python. Its performances will only scale on multicore ma-
chines, but it will allow us to emulate various network topologies.

8.1 Parallel architectures



parallel algorithms 327

8.1.1 Flynn taxonomy

Parallel computer architecture classifications are known as Flynn’s taxon-
omy [64] and are due to the work of Michael J. Flynn in 1966.

Flynn identified the following architectures:

• Single instruction, single data stream (SISD)

A sequential computer that exploits no parallelism in either the in-
struction or data streams. A single control unit (CU) fetches a single
instruction stream (IS) from memory. The CU then generates appropri-
ate control signals to direct single processing elements (PE) to operate
on a single data stream (DS), for example, one operation at a time.

Examples of SISD architecture are the traditional uniprocessor ma-
chines like a PC (currently manufactured PCs have multiple proces-
sors) or old mainframes.

• Single instruction, multiple data streams (SIMD) A computer that
exploits multiple data streams against a single instruction stream to
perform operations that may be naturally parallelized (e.g., an array
processor or GPU).

• Multiple instruction, single data stream (MISD)

Multiple instructions operate on a single data stream. This is an un-
common architecture that is generally used for fault tolerance. Het-
erogeneous systems operate on the same data stream and must agree
on the result. Examples include the now retired Space Shuttle flight
control computer.

• Multiple instruction, multiple data streams (MIMD) Multiple au-
tonomous processors simultaneously executing different instructions
on different data. Distributed systems are generally recognized to be
MIMD architectures, either exploiting a single shared memory space
(using threads) or a distributed memory space (using a message-
passing protocol such as MPI).

MIMD can be further subdivided into the following:



328 annotated algorithms in python

• Single program, multiple data (SPMD) Multiple autonomous proces-
sors simultaneously executing the same program but at independent
points not synchronously (as in the SIMD case). SPMD is the most
common style of parallel programming.

• Multiple program, multiple data (MPMD) Multiple autonomous pro-
cessors simultaneously operating at least two independent programs.
Typically such systems pick one node to be the “host” (“the ex-
plicit host/node programming model”) or “manager” (the “manager–
worker” strategy), which runs one program that farms out data to all
the other nodes, which all run a second program. Those other nodes
then return their results directly to the manager. The Map-Reduce pat-
tern also falls under this category.

An embarrassingly parallel workload (or embarrassingly parallel prob-
lem) is one for which little or no effort is required to separate the problem
into a number of parallel tasks. This is often the case where there exists
no dependency (or communication) between those parallel tasks.

The manager–worker node strategy, when workers do not need to com-
municate with each other, is an example of an “embarrassingly parallel”
problem.

8.1.2 Network topologies

In the MIMD case, multiple copies of the same problem run concurrently
(on different data subsets and branching differently, thus performing dif-
ferent instructions) on different processing units, and they exchange in-
formation using a network. How fast they can communicate depends on
the network characteristics identified by the network topology and the
latency and bandwidth of the individual links of the network.

Normally we classify network topologies based on the following taxon-
omy:

• Completely connected: Each node is connected by a directed link to
each other node.



parallel algorithms 329

• Bus topology: All nodes are connected to the same single cable. Each
computer can therefore communicate with each other computer using
one and the same bus cable. The limitation of this approach is that
the communication bandwidth is limited by the bandwidth of the ca-
ble. Most bus networks only allow two machines to communicate with
each other at one time (with the exception of one too many broad-
cast messages). While two machines communicate, the others are stuck
waiting. The bus topology is the most inexpensive but also slow and
constitutes a single point of failure.

• Switch topology (star topology): In local area networks with a switch
topology, each computer is connected via a direct link to a central de-
vice, usually a switch, and it resembles a star. Two computers can
communicate using two links (to the switch and from the switch). The
central point of failure is the switch. The switch is usually intelligent
and can reroute the messages from any computer to any other com-
puter. If the switch has sufficient bandwidth, it can allow multiple
computers to talk to each other at the same time. For example, for a 10

Gbit/s links and an 80 Gbit/s switch, eight computers can talk to each
other (in pairs) at the same time.

• Mesh topology: In a mesh topology, computers are assembled into an
array (1D, 2D, etc.), and each computer is connected via a direct link to
the computers immediately close (left, right, above, below, etc.). Next
neighbor communication is very fast because it involves a single link
and therefore low latency. For two computers not physically close to
communicate, it is necessary to reroute messages. The latency is pro-
portional to the distance in links between the computers. Some meshes
do not support this kind of rerouting because the extra logic, even if
unused, may be cause for extra latency. Meshes are ideal for solving
numerical problems such as solving differential equations because they
can be naturally mapped into this kind of topology.

• Torus topology: Very similar to a mesh topology (1D, 2D, 3D, etc.),
except that the network wraps around the edges. For example, in one
dimension node, i is connected to (i + 1)%p, where p is the total num-
ber of nodes. A one-dimensional torus is called a ring network.



330 annotated algorithms in python

• Tree network: The tree topology looks like a tree where the computer
may be associated with every tree node or every leaf only. The tree
links are the communication link. For a binary tree, each computer
only talks to its parent and its two children nodes. The root node is
special because it has no parent node.

Tree networks are ideal for global operations such as broadcasting and
for sharing IO devices such as disks. If the IO device is connected to the
root node, every other computer can communicate with it using only
log p links (where p is the number of computers connected). Moreover,
each subset of a tree network is also a tree network. This makes it easy
to distribute subtasks to different subsets of the same architecture.

• Hypercube: This network assumes 2d nodes, and each node corre-
sponds to a vertex of a hypercube. Nodes are connected by direct
links, which correspond to the edges of the hypercube. Its importance
is more academical than practical, although some ideas from hyper-
cube networks are implemented in some algorithms.

If we identify each node on the network with a unique integer number
called its rank, we write explicit code to determine if two nodes i and j
are connected for each network topology:

Listing 8.1: in file: psim.py
1 import os, string, pickle, time, math
2

3 def BUS(i,j):
4 return True
5

6 def SWITCH(i,j):
7 return True
8

9 def MESH1(p):
10 return lambda i,j,p=p: (i-j)**2==1
11

12 def TORUS1(p):
13 return lambda i,j,p=p: (i-j+p)%p==1 or (j-i+p)%p==1
14

15 def MESH2(p):
16 q=int(math.sqrt(p)+0.1)
17 return lambda i,j,q=q: ((i%q-j%q)**2,(i/q-j/q)**2) in [(1,0),(0,1)]
18



parallel algorithms 331

19 def TORUS2(p):
20 q=int(math.sqrt(p)+0.1)
21 return lambda i,j,q=q: ((i%q-j%q+q)%q,(i/q-j/q+q)%q) in [(0,1),(1,0)] or \
22 ((j%q-i%q+q)%q,(j/q-i/q+q)%q) in [(0,1),(1,0)]
23 def TREE(i,j):
24 return i==int((j-1)/2) or j==int((i-1)/2)

8.1.3 Network characteristics

• Number of links

• Diameter: The max distance between any two nodes measured as a
minimum number of links connecting them. Smaller diameter means
smaller latency. The diameter is proportional to the maximum time it
takes for a message go from one node to another.

• Bisection width: The minimum number of links one has to cut to turn
the network into two disjoint networks. Higher bisection width means
higher reliability of the network.

• Arc connectivity: The number of different paths connecting any two
nodes. Higher connectivity means higher bandwidth and higher relia-
bility.

Here are values of this parameter for each type of network:

Network Links Diameter Width Connectivity
completely connected 1 p2/4 p(p � 1)/2
switch p(p � 1) 2 n.d. 1
1D mesh p � 1 p � 1 1 1
2D mesh 2(p

1
2 � 1)p

1
2 2(p

1
2 � 1) p

1
2 p

1
2

3D mesh 3(p
1
3 � 1)p

2
3 3(p

1
3 � 1) p

2
3 p

2
3

1D torus p p/2 2 2
2D torus 2p 2p

1
2 2p

1
2 2p

1
2

3D torus 3p 3/2p
1
3 2p

1
3 2p

2
3

hypercube p/2 log p log p p/2 log 2
tree p � 1 log p 1 1



332 annotated algorithms in python

Figure 8.1: Examples of network topologies.

Most actual supercomputers implement a variety of taxonomies and
topologies simultaneously. A modern supercomputer has many nodes,
each node has many CPUs, each CPU has many cores, and each core im-
plements SIMD instructions. Each core has it own cache, each CPU has
its own cache, and each node has its own memory shared by all threads
running on that one node. Nodes communicate with each other using
multiple networks (typically a multidimensional mesh for point-to-point
communications and a tree network for global communication and gen-
eral disk IO).

This makes writing parallel programs very difficult. Parallel programs
must be optimized for each specific architecture.

8.2 Parallel metrics

8.2.1 Latency and bandwidth

The time it takes for a message of size m (in bytes) over a wire can be
broken into two components: a fixed overall time that does not depend on
the size of the message, called latency (and indicated with ts), and a time
proportional to the message size, called inverse bandwidth (and indicated
with tw).



parallel algorithms 333

Think of a pipe of length L and section s, and you want to pump m
liters of water through the pipe at velocity v. From the moment you start
pumping, it takes L/v seconds before the water starts arriving at the other
end of the pipe. From that moment, it will take m/sv for all the water to
arrive at its destination. In this analogy, L/v is the latency ts, sv is the
bandwidth, and tw = 1/sv.

The total time to send the message (or the water) is

T(m) = ts + twm (8.1)

From now on, we will use T1(n) to refer to the nonparallel running time
of an algorithm as a function of its input m. We will use Tp(n) to refer to
its running time with p parallel processes.

As a practical case, in the following example, we consider a generic algo-
rithm with the following parallel and nonparallel running times:

T1(n) = tan2 (8.2)

Tp(n) = tan2/p + 2p(ts + twn/p) (8.3)

These formulas may come from example from the problem of multiplying
a matrix times a vector.

Here ta is the time to perform one elementary instruction; ts and tw are
the latency and inverse bandwidth. The first term of Tp is nothing but
T1/p, while the second term is an overhead due to communications.

Typically ts >> tw >> ta. In the following plots, we will always assume
ta = 1, ts = 0.2, and tw = 0.1. With these assumptions, fig. 8.2.1 shows
how Tp changes with input size and number of parallel processes. Notice
that while for small p, Tp decreases µ 1/p, for large p, the communication
overhead dominates over computation. This overhead is our example and
is dominated by the latency contribution, which grows with p.



334 annotated algorithms in python

Figure 8.2: Tp as a function of input size n and number of processes p.

8.2.2 Speedup

The speedup is defined as

Sp(n) =
T1(n)
Tp(n)

(8.4)

where T1 is the time it takes to run the algorithm on an input of size n
on one processing unit (e.g., node), and Tp is the time it takes to run the
same algorithm on the same input using p nodes in parallel. Fig. 8.2.2
shows an example of speedup. When communication overhead domi-
nates, speedup decreases.



parallel algorithms 335

Figure 8.3: Sp as a function of input size n and number of processes p.

8.2.3 Efficiency

The efficiency is defined as

Ep(n) =
Sp(n)

p
=

T1(n)
pTp(n)

(8.5)

Notice that in case of perfect parallelization (impossible), Tp = T1/p, and
therefore Ep(n) = 1. Fig. 8.2.3 shows an example of efficiency. When
communication overhead dominates, efficiency drops. Notice efficiency
is always less than 1. We do not write parallel algorithms because they
are more efficient. They are always less efficient and more costly than the
nonparallel ones. We do it because we want the result sooner, and there
is an economic value in it.



336 annotated algorithms in python

Figure 8.4: Ep as a function of input size n and number of processes p.

8.2.4 Isoefficiency

Given a value of efficiency that we choose as target, E, and a given number
of nodes, p, we ask what is the maximum size of a problem that we can
solve. The answer is found by solving n the following equation:

Ep(n) = E (8.6)

For example Tp, we obtain

Ep =
1

1 + 2p2(ts + twn/p)/(n2ta)
= E (8.7)

which solved in n yields

n ' 2
tw
ta

E
1 � E

p (8.8)

Isoefficiency curves for different values of E are shown in fig. 8.2.4. For
our example problem, n is proportional to p. In general, this is not true,
but n is monotonic in p.



parallel algorithms 337

Figure 8.5: Isoefficiency curves for different values of the target efficiency.

8.2.5 Cost

The cost of a computation is equal to the time it takes to run on each node,
multiplied by the number of nodes involved in the computation:

Cp(n) = pTp(n) (8.9)

Notice that in general

dCp(n)
dp

= aT1(n) > 0 (8.10)

This means that for a fixed problem size n, the more an algorithm is par-
allelized, the more it costs to run it (because it gets less and less efficient).



338 annotated algorithms in python

Figure 8.6: Cp as a function of input size n and a number of processes p.

8.2.6 Cost optimality

With the preceding disclaimer, we define cost optimality as the choice of
p (as a function of n), which makes the cost scale proportional to T1(n):

pTp(n) µ T1(n) (8.11)

Or in other words,

p0Tp(n) + p
✓

∂Tp(n)
∂n

+ p0
∂Tp(n)

∂p

◆
=

dT1(n)
dn

(8.12)

where p0 = dp
dn .



parallel algorithms 339

8.2.7 Admahl’s law

Consider an algorithm that can be parallelized, but one faction a of its
total sequential running time aT1 cannot be parallelized. That means that
Tp = aT1 + (1 � a)T1/p, and this yields [65]

Sp =
1

a + (1 � a)/p
<

1
a

(8.13)

and

Ep =
1

pa + (1 � a)
<

1
1 � a

(8.14)

Therefore both the speedup and the efficiency are theoretically limited.

8.3 Message passing

Consider the following Python program:
1 def f():
2 import os
3 if os.fork(): print True
4 else: print False
5 f()

The output of the current program is
1 True
2 False

The function fork creates a copy of the current process (a child). The
parent process returns the ID of the child process, and the child process
returns 0. Therefore the if condition is both true and false, just on differ-
ent processes.

We have created a Python module called psim, and its source code is listed
here; psim forks the parallel processes, creates sockets connecting them,
and provides API for communications. An example of psim usage will be
given later.



340 annotated algorithms in python

Listing 8.2: in file: psim.py

1 class PSim(object):
2 def log(self,message):
3 """
4 logs the message into self._logfile
5 """
6 if self.logfile!=None:
7 self.logfile.write(message)
8

9 def __init__(self,p,topology=SWITCH,logfilename=None):
10 """
11 forks p-1 processes and creates p*p
12 """
13 self.logfile = logfilename and open(logfile,'w')
14 self.topology = topology
15 self.log("START: creating %i parallel processes\n" % p)
16 self.nprocs = p
17 self.pipes = {}
18 for i in xrange(p):
19 for j in xrange(p):
20 self.pipes[i,j] = os.pipe()
21 self.rank = 0
22 for i in xrange(1,p):
23 if not os.fork():
24 self.rank = i
25 break
26 self.log("START: done.\n")
27

28 def send(self,j,data):
29 """
30 sends data to process #j
31 """
32 if not self.topology(self.rank,j):
33 raise RuntimeError('topology violation')
34 self._send(j,data)
35

36 def _send(self,j,data):
37 """
38 sends data to process #j ignoring topology
39 """
40 if j<0 or j>=self.nprocs:
41 self.log("process %i: send(%i,...) failed!\n" % (self.rank,j))
42 raise Exception
43 self.log("process %i: send(%i,%s) starting...\n" % \
44 (self.rank,j,repr(data)))
45 s = pickle.dumps(data)
46 os.write(self.pipes[self.rank,j][1], string.zfill(str(len(s)),10))
47 os.write(self.pipes[self.rank,j][1], s)



parallel algorithms 341

48 self.log("process %i: send(%i,%s) success.\n" % \
49 (self.rank,j,repr(data)))
50

51 def recv(self,j):
52 """
53 returns the data received from process #j
54 """
55 if not self.topology(self.rank,j):
56 raise RuntimeError('topology violation')
57 return self._recv(j)
58

59 def _recv(self,j):
60 """
61 returns the data received from process #j ignoring topology
62 """
63 if j<0 or j>=self.nprocs:
64 self.log("process %i: recv(%i) failed!\n" % (self.rank,j))
65 raise RuntimeError
66 self.log("process %i: recv(%i) starting...\n" % (self.rank,j))
67 try:
68 size=int(os.read(self.pipes[j,self.rank][0],10))
69 s=os.read(self.pipes[j,self.rank][0],size)
70 except Exception, e:
71 self.log("process %i: COMMUNICATION ERROR!!!\n" % (self.rank))
72 raise e
73 data=pickle.loads(s)
74 self.log("process %i: recv(%i) done.\n" % (self.rank,j))
75 return data

An instance of the class PSim is an object that can be used to determine
the total number of parallel processes, the rank of each running process,
to send messages to other processes, and to receive messages from them.
It is usually called a communicator; send and recv represent the simplest
type of communication pattern, point-to-point communication.

A PSim program starts by importing and creating an instance of the PSim

class. The constructor takes two arguments, the number of parallel pro-
cesses you want and the network topology you want to emulate. Before
returning the PSim instance, the constructor makes p � 1 copies of the run-
ning process and creates sockets connecting each two of them. Here is
a simple example in which we make two parallel processes and send a
message from process 0 to process 1:

1 from psim import *
2



342 annotated algorithms in python

3 comm = PSim(2,SWITCH)
4 if comm.rank == 0:
5 comm.send(1, "Hello World")
6 elif comm.rank == 1:
7 message = comm.recv(0)
8 print message

Here is a more complex example that creates p = 10 parallel processes,
and node 0 sends a message to each one of them:

1 from psim import *
2

3 p = 10
4

5 comm = PSim(p,SWITCH)
6 if comm.rank == 0:
7 for other in range(1,p):
8 comm.send(other, "Hello %s" % p)
9 else:

10 message = comm.recv(0)
11 print message

Following is a more complex example that implements a parallel scalar
product. The process with rank 0 makes up two vectors and distributes
pieces of them to the other processes. Each process computes a part of
the scalar product. Of course, the scalar product runs in linear time, and
it is very inefficient to parallelize it, yet we do it for didactic purposes.

Listing 8.3: in file: psim_scalar.py
1 import random
2 from psim import PSim
3

4 def scalar_product_test1(n,p):
5 comm = PSim(p)
6 h = n/p
7 if comm.rank==0:
8 a = [random.random() for i in xrange(n)]
9 b = [random.random() for i in xrange(n)]

10 for k in xrange(1,p):
11 comm.send(k, a[k*h:k*h+h])
12 comm.send(k, b[k*h:k*h+h])
13 else:
14 a = comm.recv(0)
15 b = comm.recv(0)
16 scalar = sum(a[i]*b[i] for i in xrange(h))
17 if comm.rank == 0:
18 for k in xrange(1,p):



parallel algorithms 343

19 scalar += comm.recv(k)
20 print scalar
21 else:
22 comm.send(0,scalar)
23

24 scalar_product_test(10,2)

Most parallel algorithms follow a similar pattern. One process has access
to IO. That process reads and scatters the data. The other processes per-
form their part of the computation; the results are reduced (aggregated)
and sent back to the root process. This pattern may be repeated by multi-
ple functions, perhaps in loops. Different functions may handle different
data structure and may have different communication patterns. The one
thing that must be constant throughout the run is the number of processes
because one wants to pair each process with one computing unit.

In the following, we implement a parallel version of the mergesort. At
each step, the code splits the problem into two smaller problems. Half of
the problem is solved by the process that performed the split and assigns
the other half to an existing free process. When there are no more free
processes, it reverts to the nonparallel mergesort step. The merge function
here is the same as the nonparallel mergesort of chapter 3.

Listing 8.4: in file: psim_mergesort.py
1 import random
2 from psim import PSim
3

4 def mergesort(A, x=0, z=None):
5 if z is None: z = len(A)
6 if x<z-1:
7 y = int((x+z)/2)
8 mergesort(A,x,y)
9 mergesort(A,y,z)

10 merge(A,x,y,z)
11

12 def merge(A,x,y,z):
13 B,i,j = [],x,y
14 while True:
15 if A[i]<=A[j]:
16 B.append(A[i])
17 i=i+1
18 else:
19 B.append(A[j])
20 j=j+1



344 annotated algorithms in python

21 if i==y:
22 while j<z:
23 B.append(A[j])
24 j=j+1
25 break
26 if j==z:
27 while i<y:
28 B.append(A[i])
29 i=i+1
30 break
31 A[x:z]=B
32

33 def mergesort_test(n,p):
34 comm = PSim(p)
35 if comm.rank==0:
36 data = [random.random() for i in xrange(n)]
37 comm.send(1, data[n/2:])
38 mergesort(data,0,n/2)
39 data[n/2:] = comm.recv(1)
40 merge(data,0,n/2,n)
41 print data
42 else:
43 data = comm.recv(0)
44 mergesort(data)
45 comm.send(0,data)
46

47 mergesort_test(20,2)

More interesting patterns are global communication patterns imple-
mented on top of send and recv. Subsequently, we discuss the most com-
mon: broadcast, scatter, collect, and reduce. Our implementation is not
the most efficient, but it is the simplest. In principle, there should be a
different implementation for each type of network topology to take ad-
vantage of its features.

8.3.1 Broadcast

The simplest type of broadcast is the one-2-all, which consists of one pro-
cess (source) sending a message (value) to every other process. A more
complex broadcast is when each process broadcasts a message simultane-
ously and each node receives the list of values ordered by the rank of the
sender:



parallel algorithms 345

Listing 8.5: in file: psim.py

1 def one2all_broadcast(self, source, value):
2 self.log("process %i: BEGIN one2all_broadcast(%i,%s)\n" % \
3 (self.rank,source, repr(value)))
4 if self.rank==source:
5 for i in xrange(0, self.nprocs):
6 if i!=source:
7 self._send(i,value)
8 else:
9 value=self._recv(source)

10 self.log("process %i: END one2all_broadcast(%i,%s)\n" % \
11 (self.rank,source, repr(value)))
12 return value
13

14 def all2all_broadcast(self, value):
15 self.log("process %i: BEGIN all2all_broadcast(%s)\n" % \
16 (self.rank, repr(value)))
17 vector=self.all2one_collect(0,value)
18 vector=self.one2all_broadcast(0,vector)
19 self.log("process %i: END all2all_broadcast(%s)\n" % \
20 (self.rank, repr(value)))
21 return vector

We have implemented the all-to-all broadcast using a trick. We send col-
lected all values to node with rank 0 (via a function collect), and then we
did a one-to-all broadcast of the entire list from node 0. In general, the
implementation depends on the topology of the available network.

Here is an example of an application of broadcasting:
1 from psim import *
2

3 p = 10
4

5 comm = PSim(p,SWITCH)
6 message = "Hello World" if comm.rank==0 else None
7 message = comm.one2all_broadcast(0, message)
8 print message

Notice how before the broadcast, only the process with rank 0 has knowl-
edge of the message. After broadcast, all nodes are aware of it. Also
notice that one2all_broadcast is a global communication function, and all
processes must call it. Its first argument is the rank of the broadcasting
process (0), while the second argument is the message to be broadcasted
(only the value from node 0 is actually used).



346 annotated algorithms in python

8.3.2 Scatter and collect

The all-to-one collect pattern works as follows. Every process sends a
value to process destination, which receives the values in a list ordered
according to the rank of the senders:

Listing 8.6: in file: psim.py
1 def one2all_scatter(self,source,data):
2 self.log('process %i: BEGIN all2one_scatter(%i,%s)\n' % \
3 (self.rank,source,repr(data)))
4 if self.rank==source:
5 h, remainder = divmod(len(data),self.nprocs)
6 if remainder: h+=1
7 for i in xrange(self.nprocs):
8 self._send(i,data[i*h:i*h+h])
9 vector = self._recv(source)

10 self.log('process %i: END all2one_scatter(%i,%s)\n' % \
11 (self.rank,source,repr(data)))
12 return vector
13

14 def all2one_collect(self,destination,data):
15 self.log("process %i: BEGIN all2one_collect(%i,%s)\n" % \
16 (self.rank,destination,repr(data)))
17 self._send(destination,data)
18 if self.rank==destination:
19 vector = [self._recv(i) for i in xrange(self.nprocs)]
20 else:
21 vector = []
22 self.log("process %i: END all2one_collect(%i,%s)\n" % \
23 (self.rank,destination,repr(data)))
24 return vector

Here is a revised version of the previous scalar product example using
scatter:

Listing 8.7: in file: psim_scalar2.py
1 import random
2 from psim import PSim
3

4 def scalar_product_test2(n,p):
5 comm = PSim(p)
6 a = b = None
7 if comm.rank==0:
8 a = [random.random() for i in xrange(n)]
9 b = [random.random() for i in xrange(n)]

10 a = comm.one2all_scatter(0,a)



parallel algorithms 347

11 b = comm.one2all_scatter(0,b)
12

13 scalar = sum(a[i]*b[i] for i in xrange(len(a)))
14

15 scalar = comm.all2one_reduce(0,scalar)
16 if comm.rank == 0:
17 print scalar
18

19 scalar_product_test2(10,2)

8.3.3 Reduce

The all-to-one reduce pattern is very similar to the collect, except that the
destination does not receive the entire list of values but some aggregated
information about the values. The aggregation must be performed using
a commutative binary function f (x, y) = f (y, x). This guarantees that the
reduction from the values go down in any order and thus are optimized
for different network topologies.

The all-to-all reduce is similar to reduce, but every process will get the re-
sult of the reduction, not just one destination node. This may be achieved
by an all-to-one reduce followed by a one-to-all broadcast:

Listing 8.8: in file: psim.py
1 def all2one_reduce(self,destination,value,op=lambda a,b:a+b):
2 self.log("process %i: BEGIN all2one_reduce(%s)\n" % \
3 (self.rank,repr(value)))
4 self._send(destination,value)
5 if self.rank==destination:
6 result = reduce(op,[self._recv(i) for i in xrange(self.nprocs)])
7 else:
8 result = None
9 self.log("process %i: END all2one_reduce(%s)\n" % \

10 (self.rank,repr(value)))
11 return result
12

13 def all2all_reduce(self,value,op=lambda a,b:a+b):
14 self.log("process %i: BEGIN all2all_reduce(%s)\n" % \
15 (self.rank,repr(value)))
16 result=self.all2one_reduce(0,value,op)
17 result=self.one2all_broadcast(0,result)
18 self.log("process %i: END all2all_reduce(%s)\n" % \
19 (self.rank,repr(value)))



348 annotated algorithms in python

20 return result

And here are some examples of a reduce operation that can be passed to
the op argument of the all2one_reduce and all2all_reduce methods:

Listing 8.9: in file: psim.py
1 @staticmethod
2 def sum(x,y): return x+y
3 @staticmethod
4 def mul(x,y): return x*y
5 @staticmethod
6 def max(x,y): return max(x,y)
7 @staticmethod
8 def min(x,y): return min(x,y)

Graph algorithms can also be parallelized, for example, the Prim algo-
rithm. One way to do it is to represent the graph using an adjacency
matrix where term i, j corresponds to the link between vertex i and vertex
j. The term can be None if the link does not exist. Any graph algorithm, in
some order, loops over the vertices and over the neighbors. This step can
be parallelized by assigning different columns of the adjacency matrix to
different computing processes. Each process only loops over some of the
neighbors of the vertex being processed. Here is an example of the Prim
algorithm:

Listing 8.10: in file: psim_prim.py
1 from psim import PSim
2 import random
3

4 def random_adjacency_matrix(n):
5 A = []
6 for r in range(n):
7 A.append([0]*n)
8 for r in range(n):
9 for c in range(0,r):

10 A[r][c] = A[c][r] = random.randint(1,100)
11 return A
12

13 class Vertex(object):
14 def __init__(self,path=[0,1,2]):
15 self.path = path
16

17 def weight(path=[0,1,2], adjacency=None):
18 return sum(adjacency[path[i-1]][path[i]] for i in range(1,len(path)))
19



parallel algorithms 349

20 def bb(adjacency,p=1):
21 n = len(adjacency)
22 comm = PSim(p)
23 Q = []
24 path = [0]
25 Q.append(Vertex(path))
26 bound = float('inf')
27 optimal = None
28 local_vertices = comm.one2all_scatter(0,range(n))
29 while True:
30 if comm.rank==0:
31 vertex = Q.pop() if Q else None
32 else:
33 vertex = None
34 vertex = comm.one2all_broadcast(0,vertex)
35 if vertex is None:
36 break
37 P = []
38 for k in local_vertices:
39 if not k in vertex.path:
40 new_path = vertex.path+[k]
41 new_path_length = weight(new_path,adjacency)
42 if new_path_length<bound:
43 if len(new_path)==n:
44 new_path.append(new_path[0])
45 new_path_length = weight(new_path,adjacency)
46 if new_path_length<bound:
47 bound = new_path_length # bcast
48 optimal = new_path # bcast
49 else:
50 new_vertex = Vertex(new_path)
51 P.append(new_vertex) # fix this
52 print new_path, new_path_length
53 x = (bound,optimal)
54 x = comm.all2all_reduce(x,lambda a,b: min(a,b))
55 (bound,optimal) = x
56

57 P = comm.all2one_collect(0,P)
58 if comm.rank==0:
59 for item in P:
60 Q+=item
61 return optimal, bound
62

63

64 m = random_adjacency_matrix(5)
65 print bb(m,p=2)



350 annotated algorithms in python

8.3.4 Barrier

Another global communication pattern is the barrier. It forces all pro-
cesses when they reach the barrier to stop and wait until all the other
processes have reached the barrier. Think of runners gathering at the
starting line of a race; when all the runners are there, the race can start.

Here we implement it using a simple all-to-all broadcast:

Listing 8.11: in file: psim.py
1 def barrier(self):
2 self.log("process %i: BEGIN barrier()\n" % (self.rank))
3 self.all2all_broadcast(0)
4 self.log("process %i: END barrier()\n" % (self.rank))
5 return

The use of barrier is usually a symptom of bad code because it forces
parallel processes to wait for other processes without data actually being
transferred.

8.3.5 Global running times

In the following table, we compute the order of growth or typical running
times for the most common network topologies for typical communication
algorithms:

Network Send/Recv One2All Bcast Scatter
completely connected 1 1 1
switch 2 log p 2p
1D mesh p � 1 p � 1 p2

2D mesh 2(p
1
2 � 1) pp p2

3D mesh 3(p
1
3 � 1) p1/3 p2

1D torus p/2 p/2 p2

2D torus 2p
1
2

pp/2 p2

3D torus 3/2p
1
3 p1/3/2 p2

hypercube log p log2 p p
tree log p log p p



parallel algorithms 351

It is obvious that the completely connected is the fastest network but also
the most expensive to build. The tree is a cheap compromise. The switch
tends to be faster for arbitrary point-to-point communication, but the
switch comes to a premium. Multidimensional meshes and toruses be-
come cost-effective when solving problems that are naturally defined on
a grid because they only require next neighbor interaction.

8.4 mpi4py

The Psim emulator does not provide any actual speedup unless you have
multiple cores or processors to execute the forked processes. A better
approach would be to use mpi4py [66] because it allows running different
processes on different machines on a network. mpi4py is a Python inter-
face to the message passing interface (MPI). MPI is a standard protocol
and API for interprocess communications. Its API are equivalent one by
one to those of PSim, except that they have different names and different
signatures.

Here is an example of using mpi4py:
1 from mpi4py import MPI
2

3 comm = MPI.COMM_WORLD
4 rank = comm.Get_rank()
5

6 if rank == 0:
7 message = "Hello World"
8 comm.send(message, dest=1, tag=11)
9 elif rank == 1:

10 message = comm.recv(source=0, tag=11)
11 print message

The comm object of class MPI.COMM_WORLD plays a similar role as the PSim

object of the previous section. The MPI send and recv functions are very
similar to the PSim equivalent ones, except that they require details about
the type of the data being transferred and a communication tag. The tag
allows node A to send multiple messages to B and allows B to receive
them out of order. PSim does not allow tags.



352 annotated algorithms in python

8.5 Master-Worker and Map-Reduce

Map-Reduce [67] is a framework for processing highly distributable prob-
lems across huge data sets using a large number of computers (nodes).
The group of computers is collectively referred to as a cluster (if all nodes
use the same hardware) or a grid (if the nodes use different hardware). It
comprises two steps:

“Map” (implemented here in a function mapfn): The master node takes the
input data, partitions it into smaller subproblems, and distributes individ-
ual pieces of the data to worker nodes. A worker node may do this again
in turn, leading to a multilevel tree structure. The worker node processes
the smaller problem, computes a result, and passes that result back to its
master node.

“Reduce” (implemented here in a function reducefn): The master node
collects the partial results from all the subproblems and combines them
in some way to compute the answer to the problem it needs.

Map-Reduce allows for distributed processing of the map and reduction
operations. Provided each mapping operation is independent of the oth-
ers, all maps can be performed in parallel—though in practice, it is limited
by the number of independent data sources and/or the number of CPUs
near each source. Similarly, a set of “reducers” can perform the reduction
phase, provided all outputs of the map operation that share the same key
are presented to the same reducer at the same time.

While this process can often appear inefficient compared to algorithms
that are more sequential, Map-Reduce can be applied to significantly
larger data sets than “commodity” servers can handle—a large server
farm can use Map-Reduce to sort a petabyte of data in only a few hours,
which would require much longer in a monolithic or single process sys-
tem.

Parallelism also offers some possibility of recovering from partial failure
of servers or storage during the operation: if one mapper or reducer fails,
the work can be rescheduled—assuming the input data are still available.



parallel algorithms 353

Map-Reduce comprises of two main functions: mapfn and reducefn. mapfn

takes a (key,value) pair of data with a type in one data domain and returns
a list of (key,value) pairs in a different domain:

mapfn(k1, v1) ! (k2, v2) (8.15)

The mapfn function is applied in parallel to every item in the input data
set. This produces a list of (k2,v2) pairs for each call. After that, the
Map-Reduce framework collects all pairs with the same key from all lists
and groups them together, thus creating one group for each one of the
different generated keys. The reducefn function is then applied in parallel
to each group, which in turn produces a collection of values in the same
domain:

reducefn(k2, [list of v2]) ! (k2, v3) (8.16)

The values returned by reducefn are then collected into a single list. Each
call to reducefn can produce one, none, or multiple partial results. Thus
the Map-Reduce framework transforms a list of (key, value) pairs into a
list of values. It is necessary but not sufficient to have implementations of
the map and reduce abstractions to implement Map-Reduce. Distributed
implementations of Map-Reduce require a means of connecting the pro-
cesses performing the mapfn and reducefn phases.

Here is a nonparallel implementation that explains the data workflow
better:

1 def mapreduce(mapper,reducer,data):
2 """
3 >>> def mapfn(x): return x%2, 1
4 >>> def reducefn(key,values): return len(values)
5 >>> data = xrange(100)
6 >>> print mapreduce(mapfn,reducefn,data)
7 {0: 50, 1: 50}
8 """
9 partials = {}

10 results = {}
11 for item in data:
12 key,value = mapper(item)
13 if not key in partials:
14 partials[key]=[value]
15 else:
16 partials[key].append(value)



354 annotated algorithms in python

17 for key,values in partials.items():
18 results[key] = reducer(key,values)
19 return results

And here is an example we can use to find how many random DNA
strings contain the subsequence “ACTA”:

1 >>> from random import choice
2 >>> strings = [''.join(choice('ATGC') for i in xrange(10))
3 ... for j in xrange(100)]
4 >>> def mapfn(string): return ('ACCA' in string, 1)
5 >>> def reducefn(check, values): return len(values)
6 >>> print mapreduce(mapfn,reducefn,strings)
7 {False: ..., True: ...}

The important thing about the preceding code is that there are two loops
in Map-Reduce. Each loop consists of executing tasks (map tasks and
reduce tasks) which are independent from each other (all the maps are
independent, all the reduce are independent, but the reduce depend on
the maps). Because they are independent, they can be executed in parallel
and by different processes.

A simple and small library that implements the map-reduce algorithm
in Python is mincemeat [68]. The workers connect and authenticate to the
server using a password and request tasks to executed. The server accepts
connections and assigns the map and reduce tasks to the workers.

The communication is performed using asynchronous sockets, which
means neither workers nor the master is ever in a wait state. The code
is event based, and communication only happens when a socket connect-
ing the master to a worker is ready for a write (task assignment) or a read
(task completed).

The code is also failsafe because if a worker closes the connection prema-
turely, the task is reassigned to another worker.

Function mincemeat uses the python libraries asyncore and asynchat to im-
plement the communication patterns, for which we refer to the Python
documentation.

Here is an example of a mincemeat program:
1 import mincemeat
2 from random import choice



parallel algorithms 355

3

4 strings = [''.join(choice('ATGC') for i in xrange(10)) for j in xrange(100)]
5 def mapfn(k1, string): yield ('ACCA' in string, 1)
6 def reducefn(k2, values): return len(values)
7

8 s = mincemeat.Server()
9 s.mapfn = mapfn

10 s.reducefn = reducefn
11 s.datasource = dict(enumerate(strings))
12 results = s.run_server(password='changeme')
13 print results

Notice that in mincemeat, the data source is a list of key value dictionaries
where the values are the ones to be processed. The key is also passed
to the mapfn function as first argument. Moreover, the mapfn function can
return more than one value using yield. This syntactical notation makes
minemeat more flexible.

Execute this script on the server:
1 > python mincemeat_example.py

Run mincemeat.py as a worker on a client:
1 > python mincemeat.py -p changeme [server address]

You can run more than one worker, although for this example the server
will terminate almost immediately.

Function mincemeat works fine for many applications, but sometimes one
wishes for a more powerful tool that provides faster communications,
support for arbitrary languages, and better scalability tools and monitor-
ing tools. An example in Python is disco. A standard tool, written in Java
but supporting Python, is Hadoop.

8.6 pyOpenCL

Nvidia should be credited for bringing GPU computing to the mass mar-
ket. They have developed the CUDA [69] framework for GPU program-
ming. CUDA programs consist of two parts: a host and a kernel. The
host deploys the kernel on the available GPU core, and multiple copies of
the kernel run in parallel.



356 annotated algorithms in python

Nvidia, AMD, Intel, and ARM have created the Kronos Group, and to-
gether they have developed the Open Common Language framework
(OpenCL [70]), which borrows many ideas from CUDA and promises
more portability. OpenCL supports Intel/AMD CPUs, Nvidia/ATI GPU,
ARM chips, and the LLVM virtual machine.

OpenCL is a C99 dialect. In OpenCL, like in CUDA, there is a host pro-
gram and a kernel. Multiple copies of the kernel are queued and run in
parallel on available devices. Kernels running on the same device have
access to a shared memory area as well as local memory areas.

A typical OpenCL program has the following structure:
1 find available devices (GPUs, CPUs)
2 copy data from host to device
3 run N copies of this kernel code on the device
4 copy data from device to host

Usually the kernel is written in C99, while the host is written in C++. It is
also possible to write the host code in other languages, including Python.
Here we will use the pyOpenCL [4] module for programming the host using
Python. This produces no significative loss of performance compared to
C++ because the actual computation is performed by kernel, not by the
host. It is also possible to write the kernels using Python. This can be
done using a library called Clyther [71] or one called ocl [5]. Here we
will use the latter; ocl performs a one-time conversion of Python code for
the kernel to C99 code. This conversion is done line by line and therefore
also introduces no performance loss compared to writing native OpenCL
kernels. It also provides an additional abstraction layer on top of pyOpenCL,
which will make our examples more compact.

8.6.1 A first example with PyOpenCL

pyOpenCL uses numpy multidimensional arrays to store data. For example,
here is a numpy example that performs the scalar product between two
vectors, u and v:

1 import numpy as npy
2

3 size = 10000



parallel algorithms 357

4 u = npy.random.rand(size).astype(npy.float32)
5 v = npy.random.rand(size).astype(npy.float32)
6 w = npy.zeros(n,dtype=numpy.float32)
7

8 for i in xrange(0, n):
9 w[i] = u[i] + v[i];

10

11 assert npy.linalg.norm(w - (u + v)) == 0

The program works as follows:

• It creates a two numpy arrays u and v of given size and filled with ran-
dom numbers.

• It creates another numpy array w of the same size filled with zeros.

• It loops over all indices of w and adds, term by term, u and v storing
the result into w.

• It checks the result using the numpy linalg submodule.

Our goal is to parallelize the part of the computation performed in the
loop. Notice that our parallelization will not make the code faster because
this is a linear algorithm, and algorithms linear in the input are never
faster when parallelized because the communication has the same order
of growth as the algorithm itself:

1 from ocl import Device
2 import numpy as npy
3

4 n = 100000
5 u = npy.random.rand(n).astype(npy.float32)
6 v = npy.random.rand(n).astype(npy.float32)
7

8 device = Device()
9 u_buffer = device.buffer(source=a)

10 v_buffer = device.buffer(source=b)
11 w_buffer = device.buffer(size=b.nbytes)
12

13 kernels = device.compile("""
14

__kernel void sum(__global const float *u, /* u_buffer */
15

__global const float *v, /* v_buffer */
16

__global float *w) { /* w_buffer */
17 int i = get_global_id(0); /* thread id */
18 w[i] = u[i] + v[i];
19 }
20 """)



358 annotated algorithms in python

21

22 kernels.sum(device.queue,[n],None,u_buffer,v_buffer,w_buffer)
23 w = device.retrieve(w_buffer)
24

25 assert npy.linalg.norm(w - (u+v)) == 0

This program performs the following steps in addition to the original
non-OpenCL code: it declares a device object; it declares a buffer for each
of the vectors u, v, and w; it declares and compiles the kernel; it runs the
kernel; it retrieves the result.

The device object encapsulate the kernel(s) and a queue for kernel sub-
mission.

The line:
1 kernels.sum(...,[n],...)

submits to the queue n instances of the sum kernel. Each kernel instance
can retrieve its own ID using the function get_global_id(0). Notice that a
kernel must be declared with the __kernel prefix. Arguments that are to
be shared by all kernels must be __global.

The Device class is defined in the “ocl.py” file in terms of pyOpenCL API:
1 import numpy
2 import pyopencl as pcl
3

4 class Device(object):
5 flags = pcl.mem_flags
6 def __init__(self):
7 self.ctx = pcl.create_some_context()
8 self.queue = pcl.CommandQueue(self.ctx)
9 def buffer(self,source=None,size=0,mode=pcl.mem_flags.READ_WRITE):

10 if source is not None: mode = mode|pcl.mem_flags.COPY_HOST_PTR
11 buffer = pcl.Buffer(self.ctx,mode, size=size, hostbuf=source)
12 return buffer
13 def retrieve(self,buffer,shape=None,dtype=numpy.float32):
14 output = numpy.zeros(shape or buffer.size/4,dtype=dtype)
15 pcl.enqueue_copy(self.queue, output, buffer)
16 return output
17 def compile(self,kernel):
18 return pcl.Program(self.ctx,kernel).build()

Here self.ctx is the device context, self.queue is the device queue. The
functions buffer, retrieve, and compile map onto the corresponding py-
OpenCL functions Buffer, enqueue_copy, and Program but use a simpler



parallel algorithms 359

syntax. For more details, we refer to the official pyOpenCL documentation.

8.6.2 Laplace solver

In this section we implement a two-dimensional Laplace solver. A three-
dimensional generalization is straightforward. In particular, we want to
solve the following differential equation known as a Laplace equation:

(∂2
x + ∂

2
y)u(x, y) = q(x, y) (8.17)

Here q is the input and u is the output.

This equation originates, for example, in electrodynamics. In this case,
q is the distribution of electric charge in space and u is the electrostatic
potential.

As we did in chapter 3, we proceed by discretizing the derivatives:

∂

2
xu(x, y) = (u(x � h, y)� 2u(x, y) + u(x + h, y))/h2 (8.18)

∂

2
yu(x, y) = (u(x, y � h)� 2u(x, y) + u(x, y + h))/h2 (8.19)

Substitute them into eq. 8.17 and solve the equation in u(x, y). We obtain

u(x, y) = 1/4(u(x� h, y)+u(x+ h, y)+u(x, y� h)+u(x, y+ h)� h2q(x, y))
(8.20)

We can therefore solve eq. 8.17 by iterating eq. 8.20 until convergence. The
initial value of u will not affect the solution, but the closer we can pick it
to the actual solution, the faster the convergence.

The procedure we utilized here for transforming a differential equation
into an iterative procedure is a general one and applies to other differen-
tial equations as well. The iteration proceeds very much as the fixed point
solver also examined in chapter 3.

Here is an implementation using ocl:
1 from ocl import Device



360 annotated algorithms in python

2 from canvas import Canvas
3 from random import randint, choice
4 import numpy
5

6 n = 300
7 q = numpy.zeros((n,n), dtype=numpy.float32)
8 u = numpy.zeros((n,n), dtype=numpy.float32)
9 w = numpy.zeros((n,n), dtype=numpy.float32)

10

11 for k in xrange(n):
12 q[randint(1, n-1),randint(1, n-1)] = choice((-1,+1))
13

14 device = Device()
15 q_buffer = device.buffer(source=q, mode=device.flags.READ_ONLY)
16 u_buffer = device.buffer(source=u)
17 w_buffer = device.buffer(source=w)
18

19

20 kernels = device.compile("""
21

__kernel void solve(__global float *w,
22

__global const float *u,
23

__global const float *q) {
24 int x = get_global_id(0);
25 int y = get_global_id(1);
26 int xy = y*WIDTH + x, up, down, left, right;
27 if(y!=0 && y!=WIDTH-1 && x!=0 && x!=WIDTH-1) {
28 up=xy+WIDTH; down=xy-WIDTH; left=xy-1; right=xy+1;
29 w[xy] = 1.0/4.0*(u[up]+u[down]+u[left]+u[right] - q[xy]);
30 }
31 }
32 """.replace('WIDTH',str(n)))
33

34 for k in xrange(1000):
35 kernels.solve(device.queue, [n,n], None, w_buffer, u_buffer, q_buffer)
36 (u_buffer, w_buffer) = (w_buffer, u_buffer)
37

38 u = device.retrieve(u_buffer,shape=(n,n))
39

40 Canvas().imshow(u).save(filename='plot.png')

We can now use the Python to C99 converter of ocl to write the kernel
using Python:

1 from ocl import Device
2 from canvas import Canvas
3 from random import randint, choice
4 import numpy
5

6 n = 300



parallel algorithms 361

Figure 8.7: The image shows the output of the Laplace program and represents the
two-dimensional electrostatic potential for a random charge distribution.

7 q = numpy.zeros((n,n), dtype=numpy.float32)
8 u = numpy.zeros((n,n), dtype=numpy.float32)
9 w = numpy.zeros((n,n), dtype=numpy.float32)

10

11 for k in xrange(n):
12 q[randint(1, n-1),randint(1, n-1)] = choice((-1,+1))
13

14 device = Device()
15 q_buffer = device.buffer(source=q, mode=device.flags.READ_ONLY)
16 u_buffer = device.buffer(source=u)
17 w_buffer = device.buffer(source=w)
18

19 @device.compiler.define_kernel(
20 w='global:ptr_float',
21 u='global:const:ptr_float',
22 q='global:const:ptr_float')
23 def solve(w,u,q):
24 x = new_int(get_global_id(0))
25 y = new_int(get_global_id(1))
26 xy = new_int(x*n+y)
27 if y!=0 and y!=n-1 and x!=0 and x!=n-1:
28 up = new_int(xy-n)
29 down = new_int(xy+n)



362 annotated algorithms in python

30 left = new_int(xy-1)
31 right = new_int(xy+1)
32 w[xy] = 1.0/4*(u[up]+u[down]+u[left]+u[right] - q[xy])
33

34 kernels = device.compile(constants=dict(n=n))
35

36 for k in xrange(1000):
37 kernels.solve(device.queue, [n,n], None, w_buffer, u_buffer, q_buffer)
38 (u_buffer, w_buffer) = (w_buffer, u_buffer)
39

40 u = device.retrieve(u_buffer,shape=(n,n))
41

42 Canvas().imshow(u).save(filename='plot.png')

The output is shown in fig. 8.6.2.

One can pass constants to the kernel using
1 device.compile(..., constants = dict(n = n))

One can also pass include statements to the kernel:
1 device.compile(..., includes = ['#include <math.h>'])

where includes is a list of #include statements.

Notice how the kernel is line by line the same as the original C code. An
important part of the new code is the define_kernel decorator. It tells ocl

that the code must be translated to C99. It also declares the type of each
argument, for example,

1 ...define_kernel(... u='global:const:ptr_float' ...)

It means that:
1 global const float* u

Because in C, one must declare the type of each new variable, we must do
the same in ocl. This is done using the pseudo-casting operators new_int,
new_float, and so on. For example,

1 a = new_int(b+c)

is converted into
1 int a = b+c;

The converter also checks the types for consistency. The return type is
determined automatically from the type of the object that is returned.
Python objects that have no C99 equivalent like lists, tuples, dictionar-



parallel algorithms 363

ies, and sets are not supported. Other types are converted based on the
following table:

ocl C99/OpenCL
a = new_type(...) type a = ...;

a = new_prt_type(...) type *a = ...;

a = new_prt_prt_type(...) type **a = ...;

None null

ADDR(x) &x

REFD(x) *x

CAST(prt_type,x) (type*)x

8.6.3 Portfolio optimization (in parallel)

In a previous chapter, we provided an algorithm for portfolio optimiza-
tion. One critical step of that algorithm was the knowledge of all-to-all
correlations among stocks. This step can efficiently be performed on a
GPU.

In the following example, we solve the same problem again. For each time
series k, we compute the arithmetic daily returns, r[k,t], and the average
returns, mu[k]. We then compute the covariance matrix, cov[i,j], and the
correlation matrix, cor[i,j]. We use different kernels for each part of the
computation.

Finally, to make the application more practical, we use MPT [34] to com-
pute a tangency portfolio that maximizes the Sharpe ratio under the as-
sumption of Gaussian returns:

max
x

µ

Tx � rfreep
xTSx

(8.21)

Here µ is the vector of average returns (mu), S is the covariance matrix
(cov), and rfree is the input risk-free interest rate. The tangency portfolio
is identified by the vector x (array x in the code) whose terms indicate the
amount to be invested in each stock (must add up to $1). We perform
this maximization on the CPU to demonstrate integration with the numpy

linear algebra package.



364 annotated algorithms in python

We use the symbols i and j to identify the stock time series and the
symbol t for time (for daily data t is a day); n is the number of stocks, and
m is the number of trading days.

We use the canvas [11] library, based on the Python matplotlib library, to
display one of the stock price series and the resulting correlation matrix.
Following is the complete code. The output from the code can be seen in
fig. 8.6.3.

1 from ocl import Device
2 from canvas import Canvas
3 import random
4 import numpy
5 from math import exp
6

7 n = 1000 # number of time series
8 m = 250 # number of trading days for time series
9 p = numpy.zeros((n,m), dtype=numpy.float32)

10 r = numpy.zeros((n,m), dtype=numpy.float32)
11 mu = numpy.zeros(n, dtype=numpy.float32)
12 cov = numpy.zeros((n,n), dtype=numpy.float32)
13 cor = numpy.zeros((n,n), dtype=numpy.float32)
14

15 for k in xrange(n):
16 p[k,0] = 100.0
17 for t in xrange(1,m):
18 c = 1.0 if k==0 else (p[k-1,t]/p[k-1,t-1])
19 p[k,t] = p[k,t-1]*exp(random.gauss(0.0001,0.10))*c
20

21 device = Device()
22 p_buffer = device.buffer(source=p, mode=device.flags.READ_ONLY)
23 r_buffer = device.buffer(source=r)
24 mu_buffer = device.buffer(source=mu)
25 cov_buffer = device.buffer(source=cov)
26 cor_buffer = device.buffer(source=cor)
27

28 @device.compiler.define_kernel(p='global:const:ptr_float',
29 r='global:ptr_float')
30 def compute_r(p, r):
31 i = new_int(get_global_id(0))
32 for t in xrange(0,m-1):
33 r[i*m+t] = p[i*m+t+1]/p[i*m+t] - 1.0
34

35 @device.compiler.define_kernel(r='global:ptr_float',
36 mu='global:ptr_float')
37 def compute_mu(r, mu):
38 i = new_int(get_global_id(0))



parallel algorithms 365

39 sum = new_float(0.0)
40 for t in xrange(0,m-1):
41 sum = sum + r[i*m+t]
42 mu[i] = sum/(m-1)
43

44 @device.compiler.define_kernel(r='global:ptr_float',
45 mu='global:ptr_float', cov='global:ptr_float')
46 def compute_cov(r, mu, cov):
47 i = new_int(get_global_id(0))
48 j = new_int(get_global_id(1))
49 sum = new_float(0.0)
50 for t in xrange(0,m-1):
51 sum = sum + r[i*m+t]*r[j*m+t]
52 cov[i*n+j] = sum/(m-1)-mu[i]*mu[j]
53

54 @device.compiler.define_kernel(cov='global:ptr_float',
55 cor='global:ptr_float')
56 def compute_cor(cov, cor):
57 i = new_int(get_global_id(0))
58 j = new_int(get_global_id(1))
59 cor[i*n+j] = cov[i*n+j] / sqrt(cov[i*n+i]*cov[j*n+j])
60

61 program = device.compile(constants=dict(n=n,m=m))
62

63 q = device.queue
64 program.compute_r(q, [n], None, p_buffer, r_buffer)
65 program.compute_mu(q, [n], None, r_buffer, mu_buffer)
66 program.compute_cov(q, [n,n], None, r_buffer, mu_buffer, cov_buffer)
67 program.compute_cor(q, [n,n], None, cov_buffer, cor_buffer)
68

69 r = device.retrieve(r_buffer,shape=(n,m))
70 mu = device.retrieve(mu_buffer,shape=(n,))
71 cov = device.retrieve(cov_buffer,shape=(n,n))
72 cor = device.retrieve(cor_buffer,shape=(n,n))
73

74 points = [(x,y) for (x,y) in enumerate(p[0])]
75 Canvas(title='Price').plot(points).save(filename='price.png')
76 Canvas(title='Correlations').imshow(cor).save(filename='cor.png')
77

78 rf = 0.05/m # input daily risk free interest rate
79 x = numpy.linalg.solve(cov,mu-rf) # cov*x = (mu-rf)
80 x *= 1.00/sum(x) # assumes 1.00 dollars in total investment
81 open('optimal_portfolio','w').write(repr(x))

Notice how the memory buffers are always one-dimensional, therefore the
i,j indexes have to be mapped into a one-dimensional index i*n+j. Also
notice that while kernels compute_r and compute_mu are called [n] times
(once per stock k), kernels compute_cov and compute_cor are called [n,n]



366 annotated algorithms in python

times, once per each couple of stocks i,j. The values of i,j are retrieved
by get_global_id(0) and (1), respectively.

In this program, we have defined multiple kernels and complied them
at once. We call one kernel at the time to make sure that the call to the
previous kernel is completed before running the next one.

Figure 8.8: The image on the left shows one of the randomly generated stock price
histories. The image on the right represents the computed correlation matrix. Rows and
columns correspond to stock returns, and the color at the intersection is their correlation
(red for high correlation and blue for no correlation). The resulting shape is an artifact
of the algorithm used to generate random data.



9

Appendices

9.1 Appendix A: Math Review and Notation

9.1.1 Symbols

• infinity
^ and
_ or
\ intersection
[ union
2 element or In
8 for each
9 exists
) implies
: such that
iff if and only if

(9.1)



368 annotated algorithms in python

9.1.2 Set theory

Important sets

0 empty set
N natural numbers {0,1,2,3,...}
N+ positive natural numbers {1,2,3,...}
Z all integers {...,-3,-2,-1,0,1,2,3,...}
R all real numbers
R+ positive real numbers (not including 0)
R0 positive numbers including 0

(9.2)

Set operations

A, B and C are some generic sets.

• Intersection
A \ B ⌘ {x : x 2 A and x 2 B} (9.3)

• Union
A [ B ⌘ {x : x 2 A or x 2 B} (9.4)

• Difference
A� B ⌘ {x : x 2 A and x /2 B} (9.5)

Set laws

• Empty set laws

A [ 0 = A (9.6)

A \ 0 = 0 (9.7)

• Idempotency laws

A [A = A (9.8)

A \A = A (9.9)



appendices 369

• Commutative laws

A [ B = B [A (9.10)

A \ B = B \A (9.11)

• Associative laws

A [ (B [ C) = (A [ B) [ C (9.12)

A \ (B \ C) = (A \ B) \ C (9.13)

• Distributive laws

A \ (B [ C) = (A \ B) [ (A \ C) (9.14)

A [ (B \ C) = (A [ B) \ (A [ C) (9.15)

• Absorption laws

A \ (A [ B) = A (9.16)

A [ (A \ B) = A (9.17)

• DeMorgan laws

A� (B [ C) = (A� B) \ (A� C) (9.18)

A� (B \ C) = (A� B) [ (A� C) (9.19)

More set definitions

• A is a subset of B iff 8x 2 A, x 2 B

• A is a proper subset of B iff 8x 2 A, x 2 B and 9x 2 B, x /2 A

• P = {Si, i = 1, ..., N} (a set of sets Si) is a partition of A iff S1 [ S2 [
... [ SN = A and 8i, j, Si \ Sj = 0

• The number of elements in a set A is called the cardinality of set A.

• cardinality(N)=countable infinite (•)

• cardinality(R)=uncountable infinite (•) !!!



370 annotated algorithms in python

Relations

• A Cartesian Product is defined as

A⇥ B = {(a, b) : a 2 A and b 2 B} (9.20)

• A binary relation R between two sets A and B if a subset of their
Cartesian product.

• A binary relation is transitive is aRb and bRc implies aRc

• A binary relation is symmetric if aRb implies bRa

• A binary relation is reflexive if aRa if always true for each a.

Examples:

• a < b for a 2 A and b 2 B is a relation (transitive)

• a > b for a 2 A and b 2 B is a relation (transitive)

• a = b for a 2 A and b 2 B is a relation (transitive, symmetric and
reflexive)

• a  b for a 2 A and b 2 B is a relation (transitive, and reflexive)

• a � b for a 2 A and b 2 B is a relation (transitive, and reflexive)

• A relation R that is transitive, symmetric and reflexive is called an
equivalence relation and is often indicated with the notation a ⇠ b.

An equivalence relation is the same as a partition.

Functions

• A function between two sets A and B is a binary relation on A ⇥ B
and is usually indicated with the notation f : A 7�! B

• The set A is called domain of the function.

• The set B is called codomain of the function.

• A function maps each element x 2 A into an element f (x) = y 2 B

• The image of a function f : A 7�! B is the set B0 = {y 2 B : 9x 2
A, f (x) = y} ✓ B



appendices 371

• If B0 is B then a function is said to be surjective.

• If for each x and x0 in A where x 6= x0 implies that f (x) 6= f (x0) (e.g.,
if not two different elements of A are mapped into different element in
B) the function is said to be a bijection.

• A function f : A 7�! B is invertible if it exists a function g : B 7�! A
such that for each x 2 A, g( f (x)) = x and y 2 B, f (g(y)) = y. The
function g is indicated with f�1.

• A function f : A 7�! B is a surjection and a bijection iff f is an invert-
ible function.

Examples:

• f (n) ⌘ nmod2 with domain N and codomain N is not a surjection nor
a bijection.

• f (n) ⌘ nmod2 with domain N and codomain {0, 1} is a surjection but
not a bijection

• f (x) ⌘ 2x with domain N and codomain N is not a surjection but is a
bijection (in fact it is not invertible on odd numbers)

• f (x) ⌘ 2x with domain R and codomain R is not a surjection and is a
bijection (in fact it is invertible)

•

9.1.3 Logarithms

If x = ay with a > 0, then y = loga x with domain x 2 (0, •) and
codomain y = (�•, •). If the base a is not indicated, the natural log
a = e = 2. 7183... is assumed.



372 annotated algorithms in python

Properties of logarithms:

loga x =
log x
log a

(9.21)

log xy = (log x) + (log y) (9.22)

log
x
y

= (log x)� (log y) (9.23)

log xn = n log x (9.24)

9.1.4 Finite sums

Definition

i<n

Â
i=0

f (i) ⌘ f (0) + f (1) + ... + f (n � 1) (9.25)

Properties

• Linearity I

in

Â
i=0

f (i) =
i<n

Â
i=0

f (i) + f (n) (9.26)

ib

Â
i=a

f (i) =
ib

Â
i=0

f (i)�
i<a

Â
i=0

f (i) (9.27)

• Linearity II

i<n

Â
i=0

a f (i) + bg(i) = a

 
i<n

Â
i=0

f (i)

!
+ b

 
i<n

Â
i=0

g(i)

!
(9.28)



appendices 373

Proof:

i<n

Â
i=0

a f (i) + bg(i) = (a f (0) + bg(0)) + ... + (a f (n � 1) + bg(n � 1))

= a f (0) + ... + a f (n � 1) + bg(0) + ... + bg(n � 1)

= a ( f (0) + ... + f (n � 1)) + b (g(0) + ... + g(n � 1))

= a

 
i<n

Â
i=0

f (i)

!
+ b

 
i<n

Â
i=0

g(i)

!
(9.29)

Examples:

i<n

Â
i=0

c = cn for any constant c (9.30)

i<n

Â
i=0

i =
1
2

n(n � 1) (9.31)

i<n

Â
i=0

i2 =
1
6

n(n � 1)(2n � 1) (9.32)

i<n

Â
i=0

i3 =
1
4

n2(n � 1)2 (9.33)

i<n

Â
i=0

xi =
xn � 1
x � 1

(geometric sum) (9.34)

i<n

Â
i=0

1
i(i + 1)

= 1 � 1
n

(telescopic sum) (9.35)

9.1.5 Limits (n ! •)

In these section we will only deal with limits (n ! •) of positive func-
tions.

lim
n!•

f (n)
g(n)

=? (9.36)



374 annotated algorithms in python

First compute limits of the numerator and denominator separately:

lim
n!•

f (n) = a (9.37)

lim
n!•

g(n) = b (9.38)

• If a 2 R and b 2 R+ then

lim
n!•

f (n)
g(n)

=
a
b

(9.39)

• If a 2 R and b = • then

lim
x!•

f (x)
g(x)

= 0 (9.40)

• If (a 2 R+ and b = 0) or (a = • and b 2 R)

lim
n!•

f (n)
g(n)

= • (9.41)

• If (a = 0 and b = 0) or (a = • and b = •) use de l’Hopital rule

lim
n!•

f (n)
g(n)

= lim
n!•

f 0(n)
g0(n)

(9.42)

and start again!

• Else ... the limit does not exist (typically oscillating functions or non-
analytic functions).

For any a 2 R or a = •

lim
n!•

f (n)
g(n)

= a ) lim
n!•

g(n)
f (n)

= 1/a (9.43)



appendices 375

Table of derivatives

f (x) f 0(x)
c 0
axn anxn�1

log x 1
x

ex ex

ax ax log a
xn log x, n > 0 xn�1(n log x + 1)

(9.44)

Practical rules to compute derivatives

d
dx

( f (x) + g(x)) = f 0(x) + g0(x) (9.45)

d
dx

( f (x)� g(x)) = f 0(x)� g0(x) (9.46)

d
dx

( f (x)g(x)) = f 0(x)g(x) + f (x)g0(x) (9.47)

d
dx

✓
1

f (x)

◆
= � f 0(x)

f (x)2 (9.48)

d
dx

✓
f (x)
g(x)

◆
=

f 0(x)
g(x)

� f (x)g0(x)
g(x)2 (9.49)

d
dx

f (g(x)) = f 0(g(x))g0(x) (9.50)





appendices 377


