MASSIMO DI PIERRO

WEB2PY

COMPLETE REFERENCE MANUAL, 5TH EDITION

EXPERTS4SOLUTIONS

Copyright 2008-2013 by Massimo Di Pierro. All rights reserved.

THE CONTENT OF THIS BOOK IS PROVIDED UNDER THE TERMS OF THE CREATIVE
COMMONS PUBLIC LICENSE BY-NC-ND 3.0.

http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY
USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LI-
CENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

Limit of Liability /Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty
may be created ore extended by sales representatives or written sales materials. The advice
and strategies contained herein may not be suitable for your situation. You should consult
with a professional where appropriate. Neither the publisher nor author shall be liable for
any loss of profit or any other commercial damages, including but not limited to special,
incidental, consequential, or other damages.

For more information about appropriate use of this material contact:

Massimo Di Pierro

School of Computing

DePaul University

243 S Wabash Ave

Chicago, IL 60604 (USA)

Email: massimo.dipierro@gmail.com

Library of Congress Cataloging-in-Publication Data:

ISBN: 978-0-578-12021-8
Build Date: March 3, 2013

http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

to my family

Contents

1 Introduction 23
1.1 Principles. o o 25
1.2 Web frameworks 0L 26
1.3 Model-View-Controller 28
1.4 Whyweb2py. 31
1.5 Security L 33
1.6 Inthebox 36
1.7 Aboutthisbook 37
1.8 Support. 39
1.9 Contribute L 40
1.10 Elementsofstyle 40
1.11 License o 41
1.12 Acknowledgments 42

2 The Python language 47
21 AboutPython 47
22 Startingup 48
23 help,dir o 49
24 Types 50

241 SEr Lo 50
242 Uist. ... 51
2.4.3 tupleo 52
244 dict ... 53
2.5 Aboutindentation 55
26 for...in. .. 55

27 while 56
28 if...elif...else. . oo oo oo 57
2.9 try...except...else...finally 57
2,10 def...returno 59
2.10.1 lambda 62
2,11 ClASS « v v e e e e e e e e e e e e 63
2.12 Special attributes, methods and operators 65
2.13 Fileinput/output L oL 66
214 exec,eval 67
2,15 IMpOrt 67
2.I5.1 05 o v v e e e e e e e e e e e e e e e e e 68
2,152 SYS . e e e e e e e e e e e e e 69
2.15.3 datetime Lo oL 69
2154 time o o e 70
2.15.5 cPickle oo 70
Overview 73
3.1 Startup 73
3.2 Simpleexamples 77
321 Sayhello....... 77
3.2.2 Debugging toolbar 82
323 Letscount. 82
3.24 Saymyname 83
3.2.5 Postbacks oo oL 85
3.2.6 Internationalization 88
3.3 Animageblog. 89
3.3.1 Adding authentication 103
332 Addinggrids 105
3.3.3 Configuring thelayout. 107
3.4 Asimplewiki o oo oo o 108
3.4.1 On date, datetime and time format 119
3.5 Thebuilt-in web2py wiki 120
3.5.1 MARKMIN basics 122
3.5.2 Oembed protocol 123

3.5.3 Referencing wiki content 124

35.4 Wikimenus 125

3.5.5 Service functions L. 125
3.5.6 Extending the auth.wiki feature 126
357 Components. 127
3.6 Moreonadmin 128
3.6.1 Site 128
3.6.2 About 131
363 Design oo oo 131
3.6.4 Errors 135
3.6.5 Mercurial o o Lo 138
3.6.6 Application Wizard (experimental) 139
3.6.7 Configuringadmin 140
3.6.8 Mobileadmin Lo oo 142
3.7 Moreonappadmin Lo 142
The core 145
4.1 Command lineoptions 145
42 Workflow 149
43 Dispatching 152
4.4 Libraries 155
4.5 Applications Lo Lo oo 160
4.6 APL 162
4.6.1 Accessing the API from Python modules 163
4.7 request 165
4.8 reSpONSe. 170
4.9 SeSSIoN e e e e e 174
4.9.1 Separatesessions 177
4.10 cache e 177
411 URL . o o ottt e e e e e e e 180
4.11.1 Absoluteurls o L. 182
4.11.2 Digitally signedurls 182
4.12 HTTPand redirect 184
4.13 Internationalization, and Pluralization with 7. 185
4.13.1 Determining the language 186

4.13.2 Translating variables 188

4.13.3 Comments and multiple translations 188

4.13.4 Pluralizationengine 189
4.13.5 Translations, pluralization, and MARKMIN 191
414 Cookies 192
4.15 Applicationinit o o o 0oL 193
4.16 URLrewrite, 193
4.16.1 Parameter-based system 194
4.16.2 Pattern-based system 196
4.16.3 Routesonerror 200
4.16.4 Static asset management 201
4.17 Running tasks in the background 204
417.1 Cron e 205
4.17.2 Homemade task queues 207
4.17.3 Scheduler (experimental) 208
4.18 Third party modules 218
4.19 Execution environment oL, 219
4.20 Cooperation 221
421 Logging 222
422 WSGLo 223
4.22.1 External middleware 223
4.22.2 Internal middleware 224
4.22.3 Calling WSGI applications 224
The views 227
51 Basicsyntax o oL oL 229
5.1.1 for...in ... Lo oo 229
5.1.2 while 230
5.1.3 if...elif...else 230
5.1.4 try...except...else...finally 231
5.1.5 def...returno oo 232
52 HIMLhelpers 233
521 XML .o o 235
5.2.2 Built-inhelpers 000000 236
523 Customhelpers 250
5.3 BEAUTIFY . . o v vttt ittt e et e e e 251

5.4 Server-side DOM and parsing 252
5.4.1 elements 252
5.4.2 COMPONENtsS 254
5.4.3 parentand siblings. 254
5.4.4 Replacingelements. 254
5.4.5 flatten o ool 255
546 Parsing 255

55 Pagelayout. 255
5.5.1 Default pagelayout 259
5.5.2 Customizing the defaultlayout 262
5.5.3 Mobile development, . 263

5.6 Functionsinviews 264

5.7 Blocksinviews L L. 265

The database abstraction layer 267

6.1 Dependencies, 267

6.2 Connectionstrings 269
6.2.1 Connection pooling 271
6.2.2 Connection failures 272
6.2.3 Replicated databases 272

6.3 Reserved keywords L. 272

6.4 DAL, Table, Field 273

6.5 Record representation 275

6.6 Migrations L 281

6.7 Fixing broken migrations 282

6.8 dnsert 283

6.9 commit and rollbacko L 284

6.10 RawSQL 285
6.10.1 Timing queries 285
6.10.2 executesql 285
6.10.3 _lastsql 286

6.11 drop . . v e e e e e e 287

6.12 Indexes L 287

6.13 Legacy databases and keyed tables 287

6.14

Distributed transaction 288

10

6.15
6.16
6.17

6.18

6.19
6.20

6.21

6.22
6.23
6.24

Moreonuploads 289
Query, Set,Rows L Lo 290
select e 201
6.17.1 Shortcuts L Lo 203
6.17.2 FetchingaRow 203
6.17.3 Recursiveselects 204
6.17.4 Serializing Rowsinviews 295
6.17.5 orderby, groupby, limitby, distinct, having 297
6.17.6 Logical operators 299
6.17.7 count, isempty, delete, update 299
6.17.8 Expressions 300
6.17.9 CASE . . . i i e e e e 300
6.17.10update_record 301
6.17.11 Inserting and updating from a dictionary 301
6.17.12firstand last L. 302
6.17.13as_dictand as_list. 302
6.17.14 Combining rows 302
6.17.15 find, exclude, sort 303
Othermethods 304
6.18.1 update_or_insert 304
6.18.2 validate_and_insert, validate_and_update 305
6.18.3 smart_query (experimental) 305
Computed fields 306
Virtual fields 307
6.20.1 New style virtual fields 307
6.20.2 Old style virtual fields 308
One to many relation 310
6.21.1 Innerjoins L 311
6.21.2 Leftouterjoin 313
6.21.3 Grouping and counting 313
Manytomany 314
list:<type>, and contains 315
Other operators 317

6.24.1 like, regexp, startswith, contains, upper, lower 317

6.24.2 year, month, day, hour, minutes, seconds 318

6.25
6.26

6.27
6.28

6.24.3
6.24.4
6.24.5
6.24.6

belongs Lo L e
sum, avg, min,maxand len
Substrings
Default values with coalesce and coalesce zero . . .

Generatingrawsqgl

Exporting and importingdata.

6.26.1
6.26.2
6.26.3
6.26.4
6.26.5

CSV (one Tableatatime)
CSV (all tablesatonce)
CSV and remote database synchronization
HTML and XML (one Table at a time)
Data representation

Cachingselects

Self-Reference and aliases

6.29 Advanced features L.

6.29.1
6.29.2
6.29.3
6.29.4
6.29.5
6.29.6
6.29.7
6.29.8
6.29.9
6.29.1
6.29.1
6.29.1

Table inheritance
filter_in and filter_out
before and after callbacks
Record versioning
Common fields and multi-tenancy
Common filters,
Custom Field types (experimental)
Using DAL without define tables
PostGIS, SpatiaLite, and MS Geo (experimental) . . .
o Copy data from one db into another
1 Note on new DAL and adapters
2Gotchas L L oo

7 Forms and validators

7.1

FORM
7.1.1
7.1.2
7.1.3
7.1.4

7.1.5
7.1.6

The process and validate methods
Hidden fields
keepvalues e e e e e e e e e
onvalidationo
Detect record change
Forms and redirection

319
319
320
320
321
322
322
322
323
325
326
327
328
329
329
330
330
332
333
334
334
335
336
337
338
341

11

12

7.2

73

7-4

75

7.6

77

7.8

7.1.7 Multiple forms perpage 354
7.1.8 Sharingforms 355
7.1.9 Adding buttonsto FORMs 356
7.1.10 More about manipulation of FORMs 356
SQLFORM o e e 356
7.2.1 SQLFORM and insert/update/delete 361
7.2.2 SQLFORMIn HTML 363
7.23 SQLFORMand uploads, 364
7.2.4 Storing the original filename 366
7.2.5 autodelete, 367
7.2.6 Links to referencing records 367
7.2.7 Pre-populating theform 369
7.2.8 Adding extra form elements to SQLFORM 370
7.2.9 SQLFORM without database IO 370
Other typesof Forms 371
7.3.1 SQLFORM.factory 371
7.3.2 One form for multiple tables 372
7.3.3 Confirmation Forms 373
7.3.4 Form to edit a dictionary 373
CRUD. 374
7.4.1 Settings 0 L. 375
742 Messages. L. 377
743 Methods 378
7.4.4 Record versioning 380
Customforms 382
751 CSSconventions 383
7.5.2 Hideerrors 384
Validators 385
7.6.1 Validators 386
7.6.2 Database validators 397
7.6.3 Custom validators 399
7.6.4 Validators with dependencies 401
Widgets 401
7.7.1 Autocomplete widget 403

SQLFORM.grid and SQLFORM.smartgrid 404

8 Emails and SMS

8.1

8.2

8.3
8.4
8.5
8.6

Settingupemail

8.1.1
8.1.2

Configuring email for Google App Engine
x509 and PGP Encryption

Sendingemails

8.2.1 Simpletextemail
822 HIMLemails
8.2.3 Combining text and HTML emails
824 ccandbccemails L Lo oL
8.2.5 Attachments.
8.2.6 Multiple attachments.
Sending SMSmessages

Using the template system to generate messages

Sending messages using a background task

Reading and managing email boxes (Experimental)

8.6.1
8.6.2

Connection
Fetching mail and updating flags

9 Access Control

9.1

Authentication

9.1.1

Restrictions on registration

9.1.2 Integration with OpenlD, Facebook, etc.
9.1.3 CAPTCHA and reCAPTCHA
9.1.4 Customizing Auth
9.1.5 Renaming Authtables
9.1.6 Other login methods and login forms
9.1.7 Record versioning
9.1.8 Mailand Auth
Authorization o o o oL
9.2.1 Decorators o oo
9.2.2 Combining requirements
9.2.3 Authorizationand CRUD
9.2.4 Authorization and downloads
9.2.5 Access Control and Basic Authentication

9.2.6

Manual Authentication

413
413
414
414
415
415
415
416
416
416
416
416
417
418
419
420
421

13

14

10

11

9.2.7 Settingsand messages 452
9.3 Central Authentication Service 458
9.3.1 Using web2py to authorize non-web2py apps 460

Services 463
10.1 Rendering a dictionary 463
10.1.1 HTML, XML, and JSON 464
10.1.2 Genericviews 464
10.1.3 RenderingRows 466
10.1.4 Custom formats. 467
101.5 RSS . . . o oo 467
101.6 CSVo 469
10.2 Remote procedurecalls 470
102.1 XMLRPC. 472
10.2.2 JSONRPC, 473
10.2.3 JSONRPC and Pyjamas 474
10.2.4 AMFRPC 477
1025 SOAP 480
10.3 Low level API and other recipes 480
10.3.1 simplejson Lo oo 480
103.2 PyRTF 481
10.3.3 ReportLaband PDF 482
10.4 Restful Web Services 483
10.4.1 parse_as_rest (experimental) 486
10.4.2 smart_query (experimental) 491
10.4.3 Access Control 491
10.5 Services and Authentication 492
jQuery and Ajax 495
11.1 web2py_ajaxhtmlo o oo 495
11.2 jQueryeffects L 500
11.2.1 Conditional fields in forms 504
11.2.2 Confirmationondelete 506
11.3 The ajax function 507

11.3.1 Evaltarget, 508

11.3.2 Auto-completion 508

11.3.3 Ajax form submission 511
11.3.4 Votingandrating 512

12 Components and plugins 515
121 Components L oo 515
12.1.1 Client-Server component communications 520
12.1.2 Trapped Ajaxlinks 521

122 Plugins Lo 522
12.2.1 Component plugins 526
12.2.2 Pluginmanager 527
12.2.3 Layoutplugins 528
12.2.4 Plugins repositories, 529

13 Deployment recipes 531
13.1 @NYSEIVEr.PY « v v v v v v v e e e e e e e e e e e 534
13.2 Linuxand Unix 535
13.2.1 One step production deployment 535
13.2.2 Apachesetup 535
13.23 mod_wsgi L 536
13.2.4 Settingpassword 539
13.2.5 mod_wsgiand SSL L. 539
13.2.6 mod_proxy 540
13.2.7 Startas Linuxdaemon 542
13.2.8 Nginx 543
13.2.9 Lighttpd L 0. 546
13.2.10 Shared hosting with mod_python 548
13.2.11 Cherokee with FastCGI 548
13.2.12Postgresql o oo 550
13.2.13 Start the scheduler as a Linux service (upstart) . .. 551

133 Windows Lo 552
13.3.1 Apacheand mod_wsgi 552
13.3.2 Start as Windows service 555
13.3.3 Start the scheduler as a Windows service 556

13.4 Securing sessions and admin 556

16

14

13.5 Efficiency and scalability 557
13.5.1 Efficiency tricks o0 559
13.5.2 Sessions indatabase 559
13.5.3 HAProxy a high availability load balancer 560
13.5.4 Cleaningupsessions 561
13.5.5 Uploading files in database 562
13.5.6 Collecting tickets 563
13.5.7 Memcache 564
13.5.8 Sessions in memcache 565
13.5.9 CachingwithRedis 565
13.5.105essionsinRedis 565
13.5.11 Removing applications 566
13.5.12 Using replicated databases 566
13.5.13 Compress static files 567

13.6 Deploying on PythonAnywhere 568

13.7 Deploying on Heroku 570

13.8 DeployingonEC2. 572

13.9 Deploying on Google App Engine 573
13.9.1 Configuration 574
13.9.2 Running and deployment 575
13.9.3 Configuring thehandler 577
13.9.4 Avoid the filesystem 577
13.9.5 Memcache 578
13.9.6 Datastoreissues 578
13.9.7 GAEand https 579

Other recipes 581

14.1 Upgrading 581

14.2 How to distribute your applications as binaries 581

14.3 WiIngIDE, Rad2Py, and Eclipse 582

14.4 SQLDesigner L oL Lo o 583

14.5 Publishingafolder 584

14.6 Functional testing, 585

14.7 Building a minimalist web2py00 587

14.8 Fetching anexternal URL 588

14.9 Pretty dates
14.10Geocoding
14.11Pagination
14.12httpserver.log and the

Log File Format

14.13Populating database with dummydata

14.14Accepting credit card payments L.

14.14.1 Google Wallet
14.14.2 Paypal
14.14.3 Stripe.com . .
14.14.4 Authorize.Net
14.15Dropbox API.
14.16Twitter API.
14.175treaming virtual files

Index

Bibliography

588
589
589
590
591
592
593
594
594
596
597
598
599

603

609

17

CONTENTS 19

Preface

I believe that the ability to easily build high quality web applications is of
critical importance for the growth of a free and open society. This prevents
the biggest players from monopolizing the flow of information.

Hence I started the web2py project in 2007, primarily as a teaching tool with
the goal of making web development easier, faster, and more secure. Over
time, it has managed to win the affection of thousands of knowledgeable
users and hundreds of developers. Our collective effort has created one
of the most full-featured Open Source Web Frameworks for enterprise web
development.

As a result, in 2011, web2py won the Bossie Award for best Open Source
Development Software, and in 2012 it won the Technology of the Year award
from InfoWorld.

As you will learn in the following pages, web2py tries to lower the barrier of
entry to web development by focusing on three main goals:

Ease of use. This means reducing the learning and deployment time as well
as development and maintenance costs. This is why web2py is a full-stack
framework without dependencies. It requires no installation and has no
configuration files. Everything works out of the box, including a web server,
database and a web-based IDE that gives access to all the main features. The
API includes just 12 core objects, which are easy to work with and memorize.
It can interoperate with most web servers, databases and all Python libraries.

Rapid development. Every function of web2py has a default behavior (which

22 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

can be overridden). For example, as soon as you have specified your data
models, you will have access to a web-based database administration panel.
Also, web2py automatically generates forms for your data and it allows you to
easily expose the data in HTML, XML, JSON, RSS, etc. web2py provides some
high level widgets such as the wiki and the grid to rapidly build complex
applications.

Security. The web2py Database Abstraction Layer (DAL) eliminates
SQL Injections. The template language prevents Cross Site Scripting
vulnerabilities. The forms generated by web2py provide field validation and
block Cross Site Request Forgeries. Passwords are always stored hashed.
Sessions are stored server-side by default to prevent Cookie Tampering.
Session cookies are UUID to prevent Session Hijacking.

web2py is built from the user perspective and is constantly being optimized
internally to become faster and leaner, whilst always maintaining backwards
compatibility.

web2py is free for you to use. If you benefit from it, I hope you will feel
encouraged to pay it forward by contributing back to society in whatever form
you choose.

1

Introduction

web2py [1] is a free, open-source web framework for agile development
of secure database-driven web applications; it is written in Python [2]
and programmable in Python. web2py is a full-stack framework, meaning
that it contains all the components you need to build fully functional web
applications. web2py is designed to guide a web developer to follow good
software engineering practices, such as using the Model View Controller
(MVC) pattern. web2py separates the data representation (the model) from
the data presentation (the view) and also from the application logic and
workflow (the controller). webzpy provides libraries to help the developer
design, implement, and test each of these three parts separately, and
makes them work together. web2py is built for security. This means that
it automatically addresses many of the issues that can lead to security
vulnerabilities, by following well established practices. For example, it
validates all input (to prevent injections), escapes all output (to prevent
cross-site scripting), renames uploaded files (to prevent directory traversal
attacks). web2py takes care of main security issues, so developers have
less chances of introducing vulnerabilities. web2py includes a Database
Abstraction Layer (DAL) that writes SQL [3] dynamically so that you, the
developer, don’t have to. The DAL knows how to generate SQL transparently
for SQLite [4], MySQL [5], PostgreSQL [6], MSSQL [7], FireBird [8], Oracle [9],
IBM DB2 [10], Informix [11], Ingres [12], and MongoDB [13]. The DAL can
also generate function calls for the Google Datastore when running on the

24 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

Google App Engine (GAE) [14]. Experimentally we support more databases
and new ones are constantly added. Please check on the web2py web site
and mailing list for more recent adapters. Once one or more database
tables are defined, web2py automatically generates a fully functional web-
based database administration interface to access the database and the
tables. web2py differs from other web frameworks in that it is the only
framework to fully embrace the Web 2.0 paradigm, where the web is the
computer. In fact, web2py does not require installation or configuration;
it runs on any architecture that can run Python (Windows, Windows CE,
Mac OS X, iOS, and Unix/Linux), and the development, deployment, and
maintenance phases for the applications can be done via a local or remote
web interface. web2py runs with CPython (the C implementation) and PyPy
(Python written in Python), on Python versions 2.5, 2.6, and 2.7. webapy
provides a ticketing system for error events. If an error occurs, a ticket is
issued to the user, and the error is logged for the administrator. web2py is
open source and released under the LGPL version 3 license.

Another important feature of webz2py is that we, its developers, commit to
maintain backward compatibility in future versions. We have done so since
the first release of webzpy in October, 2007. New features have been added
and bugs have been fixed, but if a program worked with webz2py 1.0, that
program will work even better today.

Here are some examples of web2py statements that illustrate its power and
simplicity. The following code:

db.define_table('person', Field('name'), Field('image', 'upload'))

creates a database table called "person” with two fields: "name", a string; and
"image", something that needs to be uploaded (the actual image). If the table
already exists but does not match this definition, it is altered appropriately.

Given the table defined above, the following code:
form = SQLFORM(db.person).process()

creates an insert form for this table that allows users to upload images.
It also validates the submitted form, renames the uploaded image in a
secure way, stores the image in a file, inserts the corresponding record in
the database, prevents double submission, and eventually modifies the form

N

INTRODUCTION 25

itself by adding error messages if the data submitted by the user does not
pass validation.

This code embeds a fully working wiki with tags, search, tag cloud,
permissions, media attachments, and oembed support:

def index(): return auth.wiki()
The following code instead:

@auth.requires_permission('read', 'person')
def f():

prevents visitors from accessing the function f unless the visitor is a member
of a group whose members have permissions to "read" records of table
"person”. If the visitor is not logged in, the visitor gets directed to a login
page (provided by default by web2py). web2py also supports components,
i.e. actions which can be loaded in a view and interact with the visitor via
Ajax without re-loading the entire page. This is done via a LOAD helper which
allows very modular design of applications; it is discussed in chapter 3 in the
context of the wiki and, in some detail, in the last chapter of this book.

This sth edition of the book describes web2py 2.4.1 and later versions.

1.1 Principles

Python programming typically follows these basic principles:
* Don’t repeat yourself (DRY).

e There should be only one way of doing things.

* Explicit is better than implicit.

web2py fully embraces the first two principles by forcing the developer to
use sound software engineering practices that discourage repetition of code.
web2py guides the developer through almost all the tasks common in web
application development (creating and processing forms, managing sessions,
cookies, errors, etc.).

web2py differs from other frameworks with regard to the third principle,
which sometimes conflicts with the other two. In particular, web2py does

1

2

26 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

not import user applications, but executes them in a predefined context. This
context exposes the Python keywords, as well as the web2py keywords.

To some this may appear as magic, but it should not. Simply, in practice,
some modules are already imported without you doing so. web2apy is
trying to avoid the annoying characteristic of other frameworks that force
the developer to import the same modules at the top of every model and
controller. web2py, by importing its own modules, saves time and prevents
mistakes, thus following the spirit of "don’t repeat yourself" and "there
should be only one way of doing things".

If the developer wishes to use other Python modules or third-party modules,
those modules must be imported explicitly, as in any other Python program.

1.2 Web frameworks

At its most fundamental level, a web application consists of a set of programs
(or functions) that are executed when the corresponding URL is visited. The
output of the program is returned to the visitor and rendered by the browser.

The purpose of web frameworks is to allow developers to build new apps
quickly, easily and without mistakes. This is done by providing APIs and
tools that reduce and simplify the amount of coding that is required.

The two classic approaches for developing web applications are:
¢ Generating HTML [15] [16] programmatically.
e Embedding code into HTML pages.

The first model is the one that was followed, for example, by early CGI
scripts. The second model is followed, for example, by PHP [17] (where the
code is in PHP, a C-like language), ASP (where the code is in Visual Basic),
and JSP (where the code is in Java).

Here is an example of a PHP program that, when executed, retrieves data
from a database and returns an HTML page showing the selected records:

<html><body><h1>Records</h1><?
mysql_connect(localhost,username,password);

14

INTRODUCTION 27

@mysql_select_db(database) or die("Unable to select database");

$query="SELECT = FROM contacts";

$result=mysql_query($query);

mysql_close();

$1=0;

while ($i < mysql_numrows($result)) {
$name=mysql_result($result, $i, "name");
$phone=mysql_result($result,$i, "phone");
echo "$name
Phone:$phone

<hr />
";
$it++;

}

?></body></html>

The problem with this approach is that code is embedded into HTML, but
the very same code also needs to generate additional HTML and to generate
SQL statements to query the database, entangling multiple layers of the
application and making it difficult to read and maintain. The situation is
even worse for Ajax applications, and the complexity grows with the number
of pages (files) that make up the application.

The functionality of the above example can be expressed in web2py with two
lines of Python code:

def index():
return HTML (BODY (H1('Records'), db().select(db.contacts.ALL)))

In this simple example, the HTML page structure is represented
programmatically by the HTML, BODY, and H1 objects; the database db is queried
by the select command; finally, everything is serialized into HTML. Notice
that db is not a keyword but a user defined variable. We will use this name
consistently to refer to a database connection to avoid confusion.

Web frameworks are typically categorized as one of two types: A "glued"
framework is built by assembling (gluing together) several third-party
components. A "full-stack" framework is built by creating components
designed specifically to be tightly integrated and work together. webzpy is a
full-stack framework. Almost all of its components are built from scratch and
are designed to work together, but they function just as well outside of the
complete web2py framework. For example, the Database Abstraction Layer
(DAL) or the template language can be used independently of the webzpy
framework by importing gluon.dal or gluon.template into your own Python
applications. gluon is the name of the web2py module that contains system

28 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

libraries. Some webzpy libraries, such as building and processing forms from
database tables, have dependencies on other portions of webapy. webzpy
can also work with third-party Python libraries, including other template
languages and DALSs, but they will not be as tightly integrated as the original
components.

1.3 Model-View-Controller

web2py encourages the developer to separate data representation (the
model), data presentation (the view) and the application workflow (the
controller). Let’s consider again the previous example and see how to build
a web2py application around it. Here is an example of the web2py MVC edit
interface:

© Models @

© Controllers @

sheil) (iest) (Lcront

© Views @

© Languages @
O static files @
©Modules @
©Private fies @

©Plugins @

The typical workflow of a request in web2py is described in the following
diagram:

INTRODUCTION 29

m m
hittpefi.. Faction
HITP Request
request

map ur, validate input, mspanch start session, stan fransaction I

DAL insg0, update, dalstas
_DALsslect __:]

In the diagram:

The Server can be the web2py built-in web server or a third-party server,
such as Apache. The Server handles multi-threading.

"main" is the main WSGI application. It performs all common tasks and
wraps user applications. It deals with cookies, sessions, transactions, URL
routing and reverse routing, and dispatching.

It can serve and stream static files if the web server is not doing it already.

The Models, Views and Controller components make up the user
application.

Multiple applications can be hosted in the same web2py instance.

The dashed arrows represent communication with the database engine(s).
The database queries can be written in raw SQL (discouraged) or by using
the web2py Database Abstraction Layer (recommended), so that webzpy
application code is not dependent on the specific database engine.

The dispatcher maps the requested URL to a function call in the controller.
The output of the function can be a string or a dictionary of symbols
(@ hash table). The data in the dictionary is rendered by a view. If the
visitor requests an HTML page (the default), the dictionary is rendered
into an HTML page. If the visitor requests the same page in XML,

30 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

web2py tries to find a view that can render the dictionary in XML. The
developer can create views to render pages in any of the already supported
protocols (HTML, XML, JSON, RSS, CSV, and RTF) or in additional custom
protocols.

e All calls are wrapped into a transaction, and any uncaught exception
causes the transaction to be rolled back. If the request succeeds, the
transaction is committed.

* web2py also handles sessions and session cookies automatically, and when
a transaction is committed, the session is also stored, unless specified
otherwise.

¢ It is possible to register recurrent tasks (via cron) to run at scheduled times
and/or after the completion of certain actions. In this way it is possible to
run long and compute-intensive tasks in the background without slowing
down navigation.

Here is a minimal and complete MVC application, consisting of three files:

"db.py" is the model:
db = DAL('sqlite://storage.sqlite')

> db.define_table('contact',

s W

1

Field('name'),

Field('phone'))
It connects to the database (in this example a SQLite database stored in the
storage.sqlite file) and defines a table called contact. If the table does not
exist, web2py creates it and, transparently and in the background, generates
SQL code in the appropriate SQL dialect for the specific database engine
used. The developer can see the generated SQL but does not need to change
the code if the database back-end, which defaults to SQLite, is replaced with
MySQL, PostgreSQL, MSSQL, FireBird, Oracle, DB2, Informix, Interbase,
Ingres, and the Google App Engine (both SQL and NoSQL).

Once a table is defined and created, web2py also generates a fully functional
web-based database administration interface, called appadmin, to access the
database and the tables.

"default.py" is the controller:

def contacts():

N

w

INTRODUCTION 31

grid=SQLFORM.grid(db.contact, user_signature=False)
return locals()

In web2py, URLs are mapped to Python modules and function calls. In this
case, the controller contains a single function (or "action") called contacts. An
action may return a string (the returned web page) or a Python dictionary
(a set of key:value pairs) or the set of local variables (as in this example). If
the function returns a dictionary, it is passed to a view with the same name
as the controller/function, which in turn renders the page. In this example,
the function contacts generates a select/search/create/update/delete grid
for table db.contact and returns the grid to the view.

"default/contacts.html" is the view:

{{extend 'layout.html'}}

<hl>Manage My Contacts</hl>

{{=grid}}

This view is called automatically by web2py after the associated controller
function (action) is executed. The purpose of this view is to render the
variables in the returned dictionary (in our case grid) into HTML. The view
file is written in HTML, but it embeds Python code delimited by the special
{{ and }} delimiters. This is quite different from the PHP code example,
because the only code embedded into the HTML is "presentation layer" code.
The "layout.html" file referenced at the top of the view is provided by webzpy
and constitutes the basic layout for all web2py applications. The layout file
can easily be modified or replaced.

1.4 Why web2py

web2py is one of many web application frameworks, but it has compelling
and unique features. web2py was originally developed as a teaching tool,
with the following primary motivations:

e FEasy for users to learn server-side web development without
compromising functionality. ~ For this reason, web2py requires no
installation and no configuration, has no dependencies (except for the
source code distribution, which requires Python 2.5 and its standard
library modules), and exposes most of its functionality via a Web interface,

32 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

including an Integrated Development Environment with Debugger and
database interface.

* webz2py has been stable from day one because it follows a top-down
design; i.e., its API was designed before it was implemented. Even as
new functionality has been added, web2py has never broken backwards
compatibility, and it will not break compatibility when additional
functionality is added in the future.

* web2py proactively addresses the most important security issues which
plague many modern web applications, as determined by OWASP [18]
below.

e web2py is lightweight. Its core libraries, including the Database
Abstraction Layer, the template language, and all the helpers amount to
1.4MB. The entire source code including sample applications and images
amounts to 10.4MB.

¢ webz2py has a small footprint and is very fast. It uses the Rocket [19]
WSGI web server developed by Timothy Farrell. It is as fast as Apache
with mod_wsgi, and supports SSL and IPvé.

* web2py uses Python syntax for models, controllers, and views, but does
not import models and controllers (as all the other Python frameworks
do) - instead it executes them. This means that apps can be installed,
uninstalled, and modified without having to restart the web server (even
in production), and different apps can coexist without their modules
interfering with one another.

* web2py uses a Database Abstraction Layer (DAL) instead of an Object
Relational Mapper (ORM). From a conceptual point of view, this means
that different database tables are mapped into different instances of one
Table class and not into different classes, while records are mapped into
instances of one Row class, not into instances of the corresponding table
class. From a practical point of view, it means that SQL syntax maps
almost one-to-one into DAL syntax, and there is no complex metaclass
programming going on under the hood as in popular ORMs, which would
add latency.

INTRODUCTION 33

WSGI [20] [21] (Web Server Gateway Interface) is an emerging Python
standard for communication between a web server and Python applications).

Here is a screenshot of the main web2py admin interface:

© Version 2.3.2 (2012-12-17 15:03:30) stable
Gheck for upgrades.) (|Reloadifouies,

tois) (Ciean) ((Packall) (Compiie

[) (Aboul) (Enors) (Ciean) (Packai) ((Compie) (Uninstal) (Disabie

o

-
- Runming on Rocket 126
L

About) (Enors) (Ciean) (Packail) (Compie) (Uninstai) (Disable ©New application wizard

Statwizaig) (requires intemet access)

©New simple application
Application name{ [Gieata]

1.5 Security

The Open Web Application Security Project [18] (OWASP) is a free and open
worldwide community focused on improving the security of application
software.

OWASP has listed the top ten security issues that put web applications at
risk. That list is reproduced here, along with a description of how each issue
is addressed by web2py:

¢ "Cross Site Scripting (XSS): XSS flaws occur whenever an application takes
user supplied data and sends it to a web browser without first validating
or encoding that content. XSS allows attackers to execute scripts in the
victim’s browser which can hijack user sessions, deface web sites, possibly
introduce wormes, etc." webzpy, by default, escapes all variables rendered in the
view, preventing XSS.

¢ "Injection Flaws: Injection flaws, particularly SQL injection, are common
in web applications. Injection occurs when user-supplied data is sent to
an interpreter as part of a command or query. The attacker’s hostile data
tricks the interpreter into executing unintended commands or changing
data." webzpy includes a Database Abstraction Layer that makes SQL injection
impossible. Normally, SQL statements are not written by the developer. Instead,

34 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

SQL is generated dynamically by the DAL, ensuring that all inserted data is
properly escaped.

e "Malicious File Execution: Code vulnerable to remote file inclusion
(RFI) allows attackers to include hostile code and data, resulting in
devastating attacks, such as total server compromise." web2py allows only
exposed functions to be executed, preventing malicious file execution. Imported
functions are never exposed; only actions are exposed. web2py uses a Web-based
administration interface which makes it very easy to keep track of what is exposed
and what is not.

¢ "Insecure Direct Object Reference: A direct object reference occurs when a
developer exposes a reference to an internal implementation object, such
as a file, directory, database record, or key, as a URL or form parameter.
Attackers can manipulate those references to access other objects without
authorization." webzpy does not expose any internal objects; moreover, webzpy
validates all URLs, thus preventing directory traversal attacks. webzpy also
provides a simple mechanism to create forms that automatically validate all input
values.

e "Cross Site Request Forgery (CSRF): A CSRF attack forces a logged-on
victim’s browser to send a pre-authenticated request to a vulnerable web
application, which then forces the victim’s browser to perform a hostile
action to the benefit of the attacker. CSRF can be as powerful as the web
application that it attacks." web2py prevents CSRF as well as accidental double
submission of forms by assigning a one-time random token to each form. Moreover
webzpy uses UUID for session cookie.

* "Information Leakage and Improper Error Handling: Applications
can unintentionally leak information about their configuration, internal
workings, or violate privacy through a variety of application problems.
Attackers use this weakness to steal sensitive data, or conduct more
serious attacks." webzpy includes a ticketing system. No error can result in
code being exposed to the users. All errors are logged and a ticket is issued to the
user that allows error tracking. But errors and source code are accessible only to
the administrator.

* "Broken Authentication and Session Management: Account credentials

INTRODUCTION 35

and session tokens are often not properly protected. Attackers
compromise passwords, keys, or authentication tokens to assume other
users’ identities." web2py provides a built-in mechanism for administrator
authentication, and it manages sessions independently for each application. The
administrative interface also forces the use of secure session cookies when the client
is not "localhost”. For applications, it includes a powerful Role Based Access
Control APL

¢ "Insecure Cryptographic Storage: =~ Web applications rarely use
cryptographic functions properly to protect data and credentials.
Attackers use weakly protected data to conduct identity theft and other
crimes, such as credit card fraud." webzpy uses the MD5 or the HMAC+SHA-
512 hash algorithms to protect stored passwords. Other algorithms are also
available.

¢ "Insecure Communications: Applications frequently fail to encrypt
network traffic when it is necessary to protect sensitive communications."
web2py includes the SSL-enabled [22] Rocket WSGI server, but it can also use
Apache or Lighttpd and mod_ssl to provide SSL encryption of communications.

e "Failure to Restrict URL Access: Frequently an application only protects
sensitive functionality by preventing the display of links or URLs to
unauthorized users. Attackers can use this weakness to access and
perform unauthorized operations by accessing those URLs directly.”
webz2py maps URL requests to Python modules and functions. webzpy provides
a mechanism for declaring which functions are public and which require
authentication and authorization. The included Role Based Access Control
API allow developers to restrict access to any function based on login, group
membership or group based permissions. The permissions are very granular
and can be combined with database filters to allow, for example, to give access
to specific tables and/or records. web2py also allows digitally signed URL and
provides API to digitally sign Ajax callbacks.

web2py was reviewed for security and you can find the result of the review
in ref. [23].

36 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

1.6 In the box

You can download web2py from the official web site:

http://www.web2py.com

web2py is composed of the following components:

libraries: provide core functionality of webz2py and are accessible
programmatically.

web server: the Rocket WSGI web server.

the admin application: used to create, design, and manage other
web2py applications. admin provides a complete web-based Integrated
Development Environment (IDE) for building web2py applications. It also
includes other functionality, such as web-based testing and a web-based
shell.

the examples application: contains documentation and interactive
examples. examples is a clone of the official web2py.com web site, and
includes epydoc documentation.

the welcome application: the basic scaffolding template for any other
application. By default it includes a pure CSS cascading menu and user
authentication (discussed in Chapter 9).

web2py is distributed in source code, and in binary form for Microsoft
Windows and for Mac OS X.

The source code distribution can be used in any platform where Python

runs and includes the above-mentioned components. To run the source code,

you need Python 2.5 or 2.7 pre-installed on the system. You also need one

of the supported database engines installed. For testing and light-demand

applications, you can use the SQLite database, included with Python 2.7.

The binary versions of web2py (for Windows and Mac OS X) include a

Python 2.7 interpreter and the SQLite database. Technically, these two are not

components of webzpy. Including them in the binary distributions enables

you to run web2py out of the box.

The following image depicts the overall web2py structure:

INTRODUCTION 37

((Applications h
welcome admin examples myapp
(mc) (MvC) (MVC) (MVC (model)
Groans)| | (Cereroniers)
(oraanin) || Garmatein) | | (Gopaimin) ()| ves)
\
s A
core libraries: request, response, session, cache,
helpers, template, forms, internationalization,DAL, etc.
() static files
rocket (ssl+ipv6) Apache, Nginx,
web server Lighttpd, etc.

[Python Interpreter]

At the bottom we find the interpreter. Moving up we find the web
server (rocket), the libraries, and the applications. Each application consists
for its own MVC design (models, controllers, views, modules, languages,
databases, and static files). Each application includes it own database
administration code (appadmin). Every webzpy instance ships with three
applications: welcome (the scaffolding app), admin (the web based IDE),
and examples (copy of website and examples).

1.7 About this book

This book includes the following chapters, besides this introduction:

* Chapter 2 is a minimalist introduction to Python. It assumes knowledge of
both procedural and object-oriented programming concepts such as loops,
conditions, function calls and classes, and covers basic Python syntax. It
also covers examples of Python modules that are used throughout the
book. If you already know Python, you may skip Chapter 2.

e Chapter 3 shows how to start webzpy, discusses the administrative
interface, and guides the reader through various examples of increasing
complexity: an application that returns a string, a counter application, an
image blog, and a full blown wiki application that allows image uploads
and comments, provides authentication, authorization, web services and
an RSS feed. While reading this chapter, you may need to refer to Chapter

38 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

2 for general Python syntax and to the following chapters for a more
detailed reference about the functions that are used.

* Chapter 4 covers more systematically the core structure and libraries:
URL mapping, request, response, sessions, caching, schedulre, cron,
internationalization and general workflow.

* Chapter 5 is a reference for the template language used to build views. It
shows how to embed Python code into HTML, and demonstrates the use
of helpers (objects that can generate HTML).

* Chapter 6 covers the Database Abstraction Layer, or DAL. The syntax of
the DAL is presented through a series of examples.

e Chapter 7 covers forms, form validation and form processing. FORM
is the low level helper for form building. SQLFORM is the high level
form builder. In Chapter 7 we also discuss Create/Read/Update/Delete
(CRUD) APL

¢ Chapter 8 covers communication with as sending emails and SMSes.

e Chapter 9 covers authentication, authorization and the extensible Role-
Based Access Control mechanism available in webz2py. Mail configuration
and CAPTCHA are also discussed here, since they are used for
authentication. In the third edition of the book we have added extensive
coverage of integration with third-party authentication mechanisms such
as OpenlD, OAuth, Google, Facebook, LinkedIn, etc.

¢ Chapter 10 is about creating web services in web2py. We provide examples
of integration with the Google Web Toolkit via Pyjamas, and with Adobe
Flash via PyAME.

e Chapter 11 is about web2py and jQuery recipes. web2py is designed
mainly for server-side programming, but it includes jQuery, since we have
found it to be the best open-source JavaScript library available for effects
and Ajax. In this chapter, we discuss how to effectively use jQuery with
web2py.

¢ Chapter 12 discusses web2py components and plugins as a way to build
modular applications. We provide an example of a plugin that implements

INTRODUCTION 39

many commonly used functionality, such as charting, comments, and
tagging.

® Chapter 13 is about production deployment of web2py applications.
We specifically discuss the deployment on a LAMP web server (which
we consider the main deployment alternative). We discuss alterantive
web servers, and configuration of the PostgreSQL database. We
discuss running as a service on a Microsoft Windows environment, and
deployment on some specific platforms including Google Applications
Engine, Heorku, and PythonAnywhere. In this chapter, we also discuss
security and scalability issues.

® Chapter 14 contains a variety of other recipes to solve specific tasks,
including upgrades, geocoding, pagination, the Twitter API, and more.

This book only covers basic web2py functionalities and the API that ships
with web2py. This book does not cover web2py appliances (i.e. ready made
applications).

You can download web2py appliances from the corresponding web site [24].

You can find additional topics discussed on the usergroup [25]. There is also
AlterEgo [26], the old webzpy blog and FAQ. This book has been written
using the markmin syntax and automatically converted to HTML, LaTeX and
PDFE.

1.8 Support

The main support channel is the usergroup [25], with dozens of posts
every day. Even if youre a newbie, don’t hesitate to ask - we’ll be
pleased to help you. There is also a formal issue tracker system on
http:/ /code.google.com/p/web2py/issue. Last but not least, you can have
professional support (see the web site for details).

40 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

1.9 Contribute

Any help is really appreciated. You can help other users on the user
group, or by directly submitting patches on the program (at the GitHub
site https://github.com/web2py/web2py). Even if you find a typo on this
book, or have an improvement on it, the best way to help is by patching
the book itself (which is under the source folder of the repository at
https://github.com/mdipierro/webz2py-book).

1.10 Elements of style

PEPS8 [27] contains good style practices when programming with Python.
You will find that web2py does not always follow these rules. This is not
because of omissions or negligence; it is our belief that the users of webzpy
should follow these rules and we encourage it. We chose not to follow some
of those rules when defining web2py helper objects in order to minimize the
probability of name conflict with objects defined by the user.

For example, the class that represents a <div> is called D1V, while according
to the Python style reference it should have been called Div. We believe that,
for this specific example that using an all-upper-case "DIV" is a more natural
choice. Moreover, this approach leaves programmers free to create a class
called "Div" if they choose to do so. Our syntax also maps naturally into the
DOM notation of most browsers (including, for example, Firefox).

According to the Python style guide, all-upper-case strings should be
used for constants and not variables. Continuing with our example, even
considering that DIV is a class, it is a special class that should never
be modified by the user because doing so would break other webzpy
applications. Hence, we believe this qualifies the DIV class as something that
should be treated as a constant, further justifying our choice of notation.

In summary, the following conventions are followed:

e HTML helpers and validators are all upper case for the reasons discussed
above (for example DIV, A, FORM, URL).

INTRODUCTION 41

¢ The translator object T is upper case despite the fact that it is an instance
of a class and not a class itself. Logically the translator object performs
an action similar to the HTML helpers, it affects rendering part of the
presentation. Also, T needs to be easy to locate in the code and must have
a short name.

* DAL classes follow the Python style guide (first letter capitalized), for
example Table, Field, Query, Row, Rows, etc.

In all other cases we believe we have followed, as much as possible, the
Python Style Guide (PEPS8). For example all instance objects are lower-case
(request, response, session, cache), and all internal classes are capitalized.

In all the examples of this book, web2py keywords are shown in bold, while
strings and comments are shown in italic.

1.11 License

webzpy is licensed under the LGPL version 3 License. The full text of the
license if available in ref. [28].

In accordance with LGPL you may:

¢ redistribute web2py with your apps (including official webzpy binary
versions)

¢ release your applications which use official web2py libraries under any
license you wish

Yet you must:

* make clear in the documentation that your application uses web2py

¢ release any modification of the web2py libraries under the LGPLv3 license
The license includes the usual disclaimer:

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

42 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Earlier versions

Earlier versions of web2py, 1.0.*-1.90.%, were released under the GPL2 license
plus a commercial exception which, for practical purposes, was very similar
to the current LPGLv3.

Third party software distributed with web2py web2py contains third party
software under the gluon/contrib/ folder and various JavaScript and CSS
files. These files are distributed with web2py under their original licenses, as
stated in the files.

1.12 Acknowledgments

web2py was originally developed by and copyrighted by Massimo Di Pierro.
The first version (1.0) was released in October, 2007. Since then it has been

INTRODUCTION 43

adopted by many users, some of whom have also contributed bug reports,
testing, debugging, patches, and proofreading of this book.

Some of the major developers and contributors are, in alphabetical order by
first name:

Adam Bryzak, Adam Gojdas, Adrian Klaver, Alain Boulch, Alan Etkin,
Alec Taylor, Alexandre Andrade, Alexey Nezhdanov, Alvaro Justen, Anand
Vaidya, Anatoly Belyakov, Ander Arbelaiz, Anders Roos, Andrew Replogle,
Andrew Willimott, Angelo Compagnucci, Angelo and Villas, Annet
Vermeer, Anthony Bastardi, Anton Muecki, Antonio Ramos, Arun Rajeevan,
Attila Csipa, Ben Goosman, Ben Reinhart, Benjamin, Bernd Rothert, Bill
Ferret, Blomqvist, Boris Manojlovic, Branko Vukelic, Brent Zeiben, Brian
Cottingham, Brian Harrison, Brian Meredyk, Bruno Rocha, CJ Lazell, Caleb
Hattingh, Carlos Galindo, Carlos Hanson, Carsten Haese, Cedric Meyer,
Charles Law, Charles Winebrinner, Chris Clark, Chris May, Chris Sanders,
Christian Foster Howes, Christopher Smiga, Christopher Steel, Clavin Sim,
Cliff Kachinske, Corne Dickens, Craig Younkins, Dan McGee, Dan Ragubba,
Dane Wright, Danny Morgan, Daniel Gonz, Daniel Haag, Daniel Lin, Dave
Stoll, David Adley, David Harrison, David Lin, David Marko, David Wagner,
Denes Lengyel, Diaz Luis, Dirk Krause, Dominic Koenig, Doug Warren,
Douglas Philips, Douglas Soares de Andrade, Douglas and Alan, Dustin
Bensing, Elcio Ferreira, Eric Vicenti, Erwin Olario, Falko Krause, Farsheed
Ashouri, Felipe Meirelles, Flavien Scheurer, Fran Boon, Francisco Gama, Fred
Yanowski, Friedrich Weber, Gabriele Alberti, Gergely Kontra, Gergely Peli,
Gerley Kontra, Gilson Filho, Glenn Caltech, Graham Dumpleton, Gregory
Benjamin, Gustavo Di Pietro, Gyuris Szabolcs, Hamdy Abdel-Badeea, Hans
C. v. Stockhausen, Hans Donner, Hans Murx, Huaiyu Wang, Ian Reinhart
Geiser, Iceberg, Igor Gassko, Ismael Serratos, Jan Beilicke, Jay Kelkar, Jeff
Bauer, Jesus Matrinez, Jim Karsten, Joachim Breitsprecher, Joakim Eriksson,
Joe Barnhart, Joel Carrier, Joel Samuelsson, John Heenan, Jon Romero, Jonas
Rundberg, Jonathan Benn, Jonathan Lundell, Jose Jachuf, Joseph Piron, Josh
Goldfoot, Josh Jaques, José Vicente de Sousa, Jurgis Pralgauskis, Keith Yang,
Kenji Hosoda, Kenneth Lundstr, Kirill Spitsin, Kyle Smith, Larry Weinberg,
Limodou, Loren McGinnis, Louis DaPrato, Luca De Alfaro, Luca Zachetti,
Lucas D’Avila, Madhukar R Pai, Manuele Presenti, Marc Abramowitz,

44 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

Marcel Hellkamp, Marcel Leuthi, Marcello Della Longa, Margaret Greaney,
Maria Mitica, Mariano Reingart, Marin Prajic,c Marin Pranji, Marius van
Niekerk, Mark Kirkwood, Mark Larsen, Mark Moore, Markus Gritsch, Mart
Senecal, Martin Hufsky, Martin Mulone, Martin Weissenboeck, Mateusz
Banach, Mathew Grabau, Mathieu Clabaut, Matt Doiron, Matthew Norris,
Michael Fig, Michael Herman, Michael Howden, Michael Jursa, Michael
Toomim, Michael Willis, Michele Comitini, Miguel Goncalves, Miguel
Lopez, Mike Amy, Mike Dickun, Mike Ellis, Mike Pechkin, Milan Melena,
Muhammet Aydin, Napoleon Moreno, Nathan Freeze, Niall Sweeny, Niccolo
Polo, Nick Groenke, Nick Vargish, Nico de Groot, Nico Zanferrari, Nicolas
Bruxer, Nik Klever, Olaf Ferger, Oliver Dain, Olivier Roch Vilato, Omi
Chiba, Ondrej Such, Ont Rif, Oscar Benjamin, Osman Masood, Ovidio
Marinho Falcao Neto, Pai, Panos Jee, Paolo Betti, Paolo Caruccio, Paolo
Gasparello, Paolo Valleri, Patrick Breitenbach, Pearu Peterson, Peli Gergely,
Pete Hunt, Peter Kirchner, Phyo Arkar Lwin, Pierre Thibault, Pieter Muller,
Piotr Banasziewicz, Ramjee Ganti, Richard Gordon, Richard Ree, Robert
Kooij, Robert Valentak, Roberto Perdomo, Robin Bhattacharyya, Roman
Bataev, Ron McOuat, Ross Peoples, Ruijun Luo, Running Calm, Ryan Seto,
Salomon Derossi, Sam Sheftel, Scott Roberts, Sergey Podlesnyi, Sharriff
Aina, Simone Bizzotto, Sriram Durbha, Sterling Hankins, Stuart Rackham,
Telman Yusupov, Thadeus Burgess, Thomas Dallagnese, Tim Farrell, Tim
Michelsen, Tim Richardson, Timothy Farrell, Tito Garrido, Tyrone Hattingh,
Vasile Ermicioi, Vidul Nikolaev Petrov, Vidul Petrov, Vinicius Assef, Vladimir
Donnikov, Vladyslav Kozlovsky, Vladyslav Kozlovskyy, Wang Huaiyu, Wen
Gong, Wes James, Will Stevens, Yair Eshel, Yarko Tymciurak, Yoshiyuki
Nakamura, Younghyun Jo, Zahariash.

I am sure I forgot somebody, so I apologize.

I particularly thank Anthony, Jonathan, Mariano, Bruno, Vladyslav, Martin,
Nathan, Simone, Thadeus, Tim, Iceberg, Denes, Hans, Christian, Fran
and Patrick for their major contributions to web2py and Anthony, Alvaro,
Brian, Bruno, Denes, Dane Denny, Erwin, Felipe, Graham, Jonathan, Hans,
Kyle, Mark, Margaret, Michele, Nico, Richard, Roberto, Robin, Roman,
Scott, Shane, Sharriff, Sriram, Sterling, Stuart, Thadeus, Wen (and others)
for proofreading various versions of this book. Their contribution was

INTRODUCTION 45

invaluable. If you find any errors in this book, they are exclusively my fault,
probably introduced by a last-minute edit. I also thank Ryan Steffen of Wiley
Custom Learning Solutions for help with publishing the first edition of this
book. web2py contains code from the following authors, whom I would like
to thank:

Guido van Rossum for Python [2], Peter Hunt, Richard Gordon, Timothy
Farrell for the Rocket [19] web server, Christopher Dolivet for EditArea [29],
Bob Ippolito for simplejson [30], Simon Cusack and Grant Edwards for
pyYRTF [31], Dalke Scientific Software for pyRSS2Gen [32], Mark Pilgrim for
feedparser [33], Trent Mick for markdownz2 [34], Allan Saddi for fcgi.py, Evan
Martin for the Python memcache module [35], John Resig for jQuery [36].

I thank Helmut Epp (provost of DePaul University), David Miller (Dean of
the College of Computing and Digital Media of DePaul University), and
Estia Eichten (Member of MetaCryption LLC), for their continuous trust and
support.

Finally, I wish to thank my wife, Claudia, and my son, Marco, for putting up
with me during the many hours I have spent developing web2py, exchanging
emails with users and collaborators, and writing this book. This book is
dedicated to them.

2

The Python language

2.1 About Python

Python is a general-purpose high-level programming language. Its design
philosophy emphasizes programmer productivity and code readability. It
has a minimalist core syntax with very few basic commands and simple
semantics, but it also has a large and comprehensive standard library,
including an Application Programming Interface (API) to many of the
underlying operating system (OS) functions. Python code, while minimalist,
defines built-in objects such as linked lists (list), tuples (tuple), hash tables
(dict), and arbitrarily long integers (long).

Python supports multiple programming paradigms, including object-
oriented (class), imperative (def), and functional (lambda) programming.
Python has a dynamic type system and automatic memory management
using reference counting (similar to Perl, Ruby, and Scheme).

Python was first released by Guido van Rossum in 1991. The language has
an open, community-based development model managed by the non-profit
Python Software Foundation. There are many interpreters and compilers that
implement the Python language, including one in Java (Jython) but, in this
brief review, we refer to the reference C implementation created by Guido.

You can find many tutorials, the official documentation and library references

1

48 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

of the language on the official Python website. [2]

For additional Python references, we can recommend the books in ref. [37]
and ref. [38].

You may skip this chapter if you are already familiar with the Python
language.

2.2 Starting up

The binary distributions of web2py for Microsoft Windows or Apple OS X
come packaged with the Python interpreter built into the distribution file
itself.

You can start it on Windows with the following command (type at the DOS
prompt):

web2py.exe -S welcome

On Apple OS X, enter the following command type in a Terminal window
(assuming you're in the same folder as web2py.app):
./web2py.app/Contents/Mac0S/web2py -S welcome

On a Linux or other Unix box, chances are that you have Python already
installed. If so, at a shell prompt type:

python web2py.py -S welcome

If you do not have Python 2.5 (or later 2.x) already installed, you will have to
download and install it before running webzpy.

The -s welcome command line option instructs webz2py to run the interactive
shell as if the commands were executed in a controller for the welcome
application, the web2py scaffolding application. This exposes almost all
web2py classes, objects and functions to you. This is the only difference
between the web2py interactive command line and the normal Python
command line.

The admin interface also provides a web-based shell for each application.
You can access the one for the "welcome" application at.

http://127.0.0.1:8000/admin/shell/index/welcome

N

w

- IRV IS

1

2

THE PYTHON LANGUAGE 49

You can try all the examples in this chapter using the normal shell or the
web-based shell.

2.3 help, dir

The Python language provides two commands to obtain documentation
about objects defined in the current scope, both built-in and user-defined.

We can ask for help about an object, for example "1™

>>> help(1l)
Help on int object:

class int(object)
| int(x[, base]) -> integer

|
| Convert a string or number to an integer, if possible. A floating point

| argument will be truncated towards zero (this does not include a string

| representation of a floating point number!) When converting a string, use
| the optional base. It is an error to supply a base when converting a

| non-string. If the argument is outside the integer range a long object

| will be returned instead.

|

|

|

|

|

Methods defined here:

__abs__(...)
X.__abs__() <==> abs(x)

n_n

and, since "1" is an integer, we get a description about the int class and all
its methods. Here the output has been truncated because it is very long and
detailed.

Similarly, we can obtain a list of methods of the object "1" with the command
dir:

>>> dir(1)
['__abs__', ..., '__xor__"']

w

© ® N o W

N

& W N R

50 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

2.4 Types

Python is a dynamically typed language, meaning that variables do not have
a type and therefore do not have to be declared. Values, on the other hand,
do have a type. You can query a variable for the type of value it contains:

>>> a = 3

>>> print type(a)
<type 'int'>

>>> a = 3.14

>>> print type(a)
<type 'float'>

>>> a = 'hello python'
>>> print type(a)
<type 'str'>

Python also includes, natively, data structures such as lists and dictionaries.

2.4.1 str

Python supports the use of two different types of strings: ASCII strings

"non

and Unicode strings. ASCII strings are delimited by ..,

"

or by ".." or
..". Triple quotes delimit multiline strings. Unicode strings start with a u
followed by the string containing Unicode characters. A Unicode string can
be converted into an ASCII string by choosing an encoding for example:

>>> a = 'this is an ASCII string'
>>> b = u'This is a Unicode string'
>>> a = b.encode('utf8")

After executing these three commands, the resulting a is an ASCII string
storing UTF8 encoded characters. By design, web2py uses UTF8 encoded
strings internally.

It is also possible to write variables into strings in various ways:

>>> print 'number is ' + str(3)

number is 3

>>> print '‘number is %s' % (3)

number is 3

>>> print '‘number is %(number)s' % dict(number=3)
number is 3

The last notation is more explicit and less error prone, and is to be preferred.

THE PYTHON LANGUAGE 51

Many Python objects, for example numbers, can be serialized into strings
using str or repr. These two commands are very similar but produce slightly
different output. For example:

>>> for i in [3, 'hello']:

print str(i), repr(i)
33
hello 'hello’
For user-defined classes, str and repr can be defined/redefined using the
special operators __str__ and __repr__. These are briefly described later on;
for more, refer to the official Python documentation [39]. repr always has a

default value.

Another important characteristic of a Python string is that, like a list, it is an
iterable object.

>>> for i in 'hello':

print i
h
e
1
1
0
2.4.2 list

The main methods of a Python list are append, insert, and delete:

>>>a = [1, 2, 3]
>>> print type(a)
<type 'list'>

>>> a.append(8)
>>> a.insert(2, 7)
>>> del a[0]

>>> print a

[2, 7, 3, 8]

>>> print len(a)

4

Lists can be sliced:

>>> print a[:3]
[2, 7, 3]
>>> print a[l:]
[7, 3, 8]
>>> print a[-2:]

52 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

[3, 8]
and concatenated.:

>>> g = [2, 3]
>>> b = [5, 6]

3 >>> print a + b

vk W N

B2 0w oN R

[2, 3, 5, 6]

A list is iterable; you can loop over it:

>>>a = [1, 2, 3]

>>> for i in a:
print i

1

2

3

The elements of a list do not have to be of the same type; they can be any
type of Python object.

There is a very common situation for which a list comprehension can be used.
Consider the following code:

>>> a = [1,2,3,4,5]
>>> b =[]
>>> for x in a:

if x % 2 == 0:

b.append(x * 3)

>>> b
[6, 12]
This code clearly processes a list of items, selects and modifies a subset of the
input list, and creates a new result list, and this code can be entirely replaced
with the following list comprehension:
>>>a = [1,2,3,4,5]
>>> b = [x * 3 for x in a if x % 2 == 0]
>>> b
[6, 12]

2.4.3 tuple

A tuple is like a list, but its size and elements are immutable, while in a list
they are mutable. If a tuple element is an object, the object attributes are
mutable. A tuple is delimited by round brackets.

>>>a = (1, 2, 3)

o U a W N

~

w .

v

N

o u kW

THE PYTHON LANGUAGE 53

So while this works for a list:

>>>a = [1, 2, 3]
>>> g[l] =5

>>> print a

[1, 5, 3]

the element assignment does not work for a tuple:

>>>a = (1, 2, 3)
>>> print a[l]
2
>>> a[l] =5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

A tuple, like a list, is an iterable object. Notice that a tuple consisting of a
single element must include a trailing comma, as shown below:

>>> g = (1)

>>> print type(a)
<type 'int'>
>>>a = (1,)

>>> print type(a)
<type 'tuple'>

Tuples are very useful for efficient packing of objects because of their
immutability, and the brackets are often optional:

>>> a =2, 3, 'hello'
>>> X, Yy, z=a
>>> print x

2

>>> print z
hello

2.4.4 dict

A Python dict-ionary is a hash table that maps a key object to a value object.
For example:

>>>a = {'k':'v', 'k2':3}
>>> al'k']

v

>>> al'k2']

3

>>> a.has_key('k"')

True

= NC T NV

~

®©

54 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

>>> a.has_key('v')

False

Keys can be of any hashable type (int, string, or any object whose class
implements the __hash__ method). Values can be of any type. Different keys
and values in the same dictionary do not have to be of the same type. If the
keys are alphanumeric characters, a dictionary can also be declared with the
alternative syntax:

>>> a = dict(k='v', h2=3)

>>> a['k']

A

>>> print a
{'k'":'v', 'h2':3}

Useful methods are has_key, keys, values and items:

>>> g = dict(k="v', k2=3)
>>> print a.keys()

['k', 'k2']
>>> print a.values()
['v', 3]

>>> print a.items()
[C'k', 'v'), ("k2', 3)]

The items method produces a list of tuples, each containing a key and its
associated value.

Dictionary elements and list elements can be deleted with the command det:

>>>a = [1, 2, 3]

>>> del a[l]

>>> print a

[1, 3]

>>> a = dict(k='v', h2=3)
>>> del a['h2']

>>> print a

{'k':'v'}

Internally, Python uses the hash operator to convert objects into integers, and
uses that integer to determine where to store the value.

>>> hash("hello world")
-1500746465

THE PYTHON LANGUAGE 5’5

2.5 About indentation

Python uses indentation to delimit blocks of code. A block starts with a
line ending in colon, and continues for all lines that have a similar or higher
indentation as the next line. For example:

>>> i =0
>>> while i < 3:

>>> print i
>>> i=1+1
>>>

0

1

2

It is common to use four spaces for each level of indentation. It is a good
policy not to mix tabs with spaces, which can result in (invisible) confusion.

2.6 for...in

In Python, you can loop over iterable objects:

>>> a = [0, 1, 'hello', 'python']
>>> for i in a:
print i
0
1
hello
python

One common shortcut is xrange, which generates an iterable range without
storing the entire list of elements.

>>> for i in xrange(0, 4):
print i

w N = ©

This is equivalent to the C/C++/C#/Java syntax:
for(int i=0; i<4; i=i+1) { print(i); }
Another useful command is enumerate, which counts while looping:

>>> a = [0, 1, 'hello', 'python']

N

<

N

-~

56 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

>>> for i, j in enumerate(a):

print i, j
00
11
2 hello
3 python
There is also a keyword range(a, b, c) that returns a list of integers starting
with the value a, incrementing by ¢, and ending with the last value smaller
than b, a defaults to o and c defaults to 1. xrange is similar but does not
actually generate the list, only an iterator over the list; thus it is better for

looping.
You can jump out of a loop using break

>>> for i in [1, 2, 3]:
print i
break

1

You can jump to the next loop iteration without executing the entire code
block with continue

>>> for i in [1, 2, 3]:

print i
continue
print 'test'

1

2

3

2.7 while

The while loop in Python works much as it does in many other programming
languages, by looping an indefinite number of times and testing a condition
before each iteration. If the condition is False, the loop ends.

>>> i =0

>>> while i < 10:
i=1i+1

>>> print i

10

There is no loop...until construct in Python.

S RS I S

©

10

THE PYTHON LANGUAGE 57

2.8 if...elif...else

The use of conditionals in Python is intuitive:

>>> for i in range(3):
>>> if i == 0:

>>> print 'zero'
>>> elif i == 1:

>>> print ‘one'
>>> else:

>>> print ‘other'
zero

one

other

"elif" means "else if". Both elif and else clauses are optional. There can be
more than one elif but only one else statement. Complex conditions can be
created using the not, and and or operators.

>>> for i in range(3):
>>> ifi=0o0r (i==1and i+ 1==2):
>>> print '0 or 1'

2.9 try...except...else...finally

Python can throw - pardon, raise - Exceptions:

>>> try:

>>> a=1/0©0

>>> except Exception, e:

>>> print 'oops: %s' % e

>>> else:

>>> print 'no problem here'

>>> finally:

>>> print ‘'done'

oops: integer division or modulo by zero
done

If the exception is raised, it is caught by the except clause, which is executed,
while the else clause is not. If no exception is raised, the except clause is not
executed, but the else one is. The finally clause is always executed.

There can be multiple except clauses for different possible exceptions:

>>> try:
>>> raise SyntaxError

58 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

>>> except ValueError:

>>> print ‘'value error'
>>> except SyntaxError:
>>> print ‘'syntax error'

syntax error

The else and finally clauses are optional.

Here is a list of built-in Python exceptions + HTTP (defined by webzpy)

BaseException

+-- HTTP (defined by web2py)

+-- SystemExit

+-- KeyboardInterrupt

+-- Exception
+-- GeneratorExit
+-- StopIteration
+-- StandardError
| +-- ArithmeticError
| | +-- FloatingPointError
| | +-- OverflowError
| | +-- ZeroDivisionError
| +-- AssertionError
| +-- AttributeError
| +-- EnvironmentError
| | +-- IOError
| | +-- OSError
| | +-- WindowsError (Windows)
| | +-- VMSError (VMS)
| +-- EOFError

| +-- ImportError

| +-- LookupError

| | +-- IndexError

| | +-- KeyError

| +-- MemoryError

| +-- NameError

| | +-- UnboundLocalError

| +-- ReferenceError

| +-- RuntimeError

| | +-- NotImplementedError

| +-- SyntaxError

| | +-- IndentationError

| | +-- TabError

| +-- SystemError

| +-- TypeError

| +-- ValueError

| | +-- UnicodeError

| | +-- UnicodeDecodeError

| | +-- UnicodeEncodeError

6

9

THE PYTHON LANGUAGE 59

| | +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning

+-- PendingDeprecationWarning

+-- RuntimeWarning

+-- SyntaxWarning

+-- UserWarning

+-- FutureWarning

+-- ImportWarning

+-- UnicodeWarning

For a detailed description of each of them, refer to the official Python
documentation. web2py exposes only one new exception, called HTTP. When
raised, it causes the program to return an HTTP error page (for more on this
refer to Chapter 4).

Any object can be raised as an exception, but it is good practice to raise
objects that extend one of the built-in exception classes.

2.10 def...return

Functions are declared using def. Here is a typical Python function:

>>> def f(a, b):
return a + b

>>> print (4, 2)

6

There is no need (or way) to specify types of the arguments or the return
type(s). In this example, a function f is defined that can take two arguments.

Functions are the first code syntax feature described in this chapter to
introduce the concept of scope, or namespace. In the above example, the
identifiers a and b are undefined outside of the scope of function f:

>>> def f(a):
return a + 1
>>> print f(1)
2
>>> print a
Traceback (most recent call last):
File "<pyshell#22>", line 1, in <module>

print a

NameError: name 'a' is not defined

N

60 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

Identifiers defined outside of function scope are accessible within the
function; observe how the identifier a is handled in the following code:

>> g =1
>>> def f(b):

return a + b
>>> print f(1)

2

>>> g = 2

>>> print f(1l) # new value of a is used
3

>>> a = 1 # reset a

>>> def g(b):
a = 2 # creates a new local a
return a + b

>>> print g(2)

>>> print a # global a is unchanged
1

If a is modified, subsequent function calls will use the new value of the global
a because the function definition binds the storage location of the identifier
a, not the value of a itself at the time of function declaration; however, if a
is assigned-to inside function g, the global a is unaffected because the new
local a hides the global value. The external-scope reference can be used in
the creation of closures:
>>> def f(x):

def g(y):

return x *x y

return g
>>> doubler = f(2) # doubler is a new function
>>> tripler = f(3) # tripler is a new function

>>> quadrupler = f(4) # quadrupler is a new function
>>> print doubler(5)

>>> print tripler(5)

>>> print quadrupler(5)

Function f creates new functions; and note that the scope of the name g is
entirely internal to f. Closures are extremely powerful.

Function arguments can have default values, and can return multiple results:

>>> def f(a, b=2):
return a + b, a - b

PN

THE PYTHON LANGUAGE 61

>>> x, y = f(5)
>>> print x

7

>>> print y

3

Function arguments can be passed explicitly by name, and this means that
the order of arguments specified in the caller can be different than the order
of arguments with which the function was defined:

>>> def f(a, b=2):
return a + b, a - b
>>> x, y = f(b=5, a=2)
>>> print x
7
>>> print y
-3

Functions can also take a runtime-variable number of arguments:

>>> def f(xa, *xb):
return a, b
>>> x, y = f(3, 'hello', c=4, test='world")
>>> print x
(3, 'hello')
>>> print y
{'c':4, 'test':'world'}

Here arguments not passed by name (3, 'hello’) are stored in the tuple a, and
arguments passed by name (c and test) are stored in the dictionary b.

In the opposite case, a list or tuple can be passed to a function that requires
individual positional arguments by unpacking them:

>>> def f(a, b):
return a + b

>>> ¢ = (1, 2)
>>> print f(x*c)
3

and a dictionary can be unpacked to deliver keyword arguments:

>>> def f(a, b):
return a + b

>>> ¢ = {'a':1l, 'b':2}

>>> print f(*xc)

3

N

w

N

w

A W N =

62 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

2.10.1 lambda

lambda provides a way to create a very short unnamed function very easily:

>>> a = lambda b: b + 2

>>> print a(3)

5

The expression "lambda [a]:[b]" literally reads as "a function with arguments
[a] that returns [b]". The lambda expression is itself unnamed, but the function
acquires a name by being assigned to identifier a. The scoping rules for def
apply to lambda equally, and in fact the code above, with respect to a, is
identical to the function declaration using def:

>>> def a(b):

return b + 2
>>> print a(3)
5
The only benefit of lambda is brevity; however, brevity can be very convenient
in certain situations. Consider a function called map that applies a function to
all items in a list, creating a new list:
>>>a=[1,7, 2,5, 4, 8]
>>> map(lambda x: x + 2, a)
[3, 9, 4, 7, 6, 10]
This code would have doubled in size had def been used instead of lambda.
The main drawback of lambda is that (in the Python implementation) the
syntax allows only for a single expression; however, for longer functions,
def can be used and the extra cost of providing a function name decreases as
the length of the function grows. Just like def, lambda can be used to curry
functions: new functions can be created by wrapping existing functions such
that the new function carries a different set of arguments:

>>> def f(a, b): return a + b

>>> g = lambda a: f(a, 3)

>>> g(2)

5

There are many situations where currying is useful, but one of those is
directly useful in web2py: caching. Suppose you have an expensive function

that checks whether its argument is prime:

def isprime(number):
for p in range(2, number):

THE PYTHON LANGUAGE 63

if (number % p) == 0:
return False
return True

This function is obviously time consuming.

Suppose you have a caching function cache. ram that takes three arguments: a
key, a function and a number of seconds.

value = cache.ram('key', f, 60)

The first time it is called, it calls the function f(), stores the output in a
dictionary in memory (let’s say "d"), and returns it so that value is:

value = d['key']=f()

The second time it is called, if the key is in the dictionary and not older

than the number of seconds specified (60), it returns the corresponding value
without performing the function call.

value = d['key']
How would you cache the output of the function isprime for any input? Here
is how:

>>> number = 7

>>> seconds = 60

>>> print cache.ram(str(number), lambda: isprime(number), seconds)
True

5 >>> print cache.ram(str(number), lambda: isprime(number), seconds)

True

The output is always the same, but the first time cache. ram is called, isprime
is called; the second time it is not.
Python functions, created with either def or lambda allow re-factoring
existing functions in terms of a different set of arguments. cache. ram
and cache.disk are web2py caching functions.

2.11 class

Because Python is dynamically typed, Python classes and objects may seem
odd. In fact, you do not need to define the member variables (attributes)
when declaring a class, and different instances of the same class can have
different attributes. Attributes are generally associated with the instance, not

64 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

the class (except when declared as "class attributes”, which is the same as
"static member variables" in C++/Java).

Here is an example:

>>> class MyClass(object): pass
>>> myinstance = MyClass()

>>> myinstance.myvariable = 3
>>> print myinstance.myvariable

Notice that pass is a do-nothing command. In this case it is used to define a
class MyClass that contains nothing. MyClass() calls the constructor of the class
(in this case the default constructor) and returns an object, an instance of the
class. The (object) in the class definition indicates that our class extends the
built-in object class. This is not required, but it is good practice.

Here is a more complex class:

>>> class MyClass(object):

2 >>> z =2

3 >>> def __init__(self, a, b):
4 >>> self.x = a

5 >>> self.y = b

®©

10

>>> def add(self):

>>> return self.x + self.y + self.z
>>> myinstance = MyClass(3, 4)

>>> print myinstance.add()

9

Functions declared inside the class are methods. Some methods have special
reserved names. For example, __init__ is the constructor. All variables are
local variables of the method except variables declared outside methods. For
example, z is a class variable, equivalent to a C++ static member variable that
holds the same value for all instances of the class.

Notice that __init__ takes 3 arguments and add takes one, and yet we call
them with 2 and o arguments respectively. The first argument represents,
by convention, the local name used inside the method to refer to the current
object. Here we use self to refer to the current object, but we could have used
any other name. self plays the same role as xthis in C++ or this in Java, but
self is not a reserved keyword.

This syntax is necessary to avoid ambiguity when declaring nested classes,

@ s W R

THE PYTHON LANGUAGE 65

such as a class that is local to a method inside another class.

2.12 Special attributes, methods and operators

Class attributes, methods, and operators starting with a double underscore
are usually intended to be private (i.e. to be used internally but not exposed
outside the class) although this is a convention that is not enforced by the
interpreter.

Some of them are reserved keywords and have a special meaning.
Here, as an example, are three of them:

* __len__

® __getitem__

® __setitem _

They can be used, for example, to create a container object that acts like a list:

>>> class MyList(object):

>>> def __init__(self, *a): self.a = list(a)
>>> def __len__(self): return len(self.a)

>>> def __getitem__(self, i): return self.a[i]
>>> def __setitem__(self, i, j): self.al[i] = j

>>> b = MylList(3, 4, 5)
>>> print b[1]

>>> b.a[l] = 7

>>> print b.a

[3, 7, 5]

Other special operators include __getattr__ and __setattr__, which define the
get and set attributes for the class, and __sum__ and __sub__, which overload
arithmetic operators. For the use of these operators we refer the reader to
more advanced books on this topic. We have already mentioned the special
operators __str__ and __repr__.

N

w

N

w

N

w

66 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

2.13 File input/output

In Python you can open and write in a file with:

>>> file = open('myfile.txt', 'w'")
>>> file.write('hello world")
>>> file.close()

Similarly, you can read back from the file with:

>>> file = open('myfile.txt', 'r'")
>>> print file.read()
hello world

Alternatively, you can read in binary mode with "rb", write in binary mode

nn

with "wb", and open the file in append mode "a", using standard C notation.

The read command takes an optional argument, which is the number of bytes.
You can also jump to any location in a file using seek.

You can read back from the file with read

>>> print file.seek(6)
>>> print file.read()
world

and you can close the file with:
>>> file.close()

In the standard distribution of Python, which is known as CPython, variables
are reference-counted, including those holding file handles, so CPython
knows that when the reference count of an open file handle decreases to
zero, the file may be closed and the variable disposed. However, in other
implementations of Python such as PyPy, garbage collection is used instead
of reference counting, and this means that it is possible that there may
accumulate too many open file handles at one time, resulting in an error
before the gc has a chance to close and dispose of them all. Therefore
it is best to explicitly close file handles when they are no longer needed.
webzpy provides two helper functions, read_file() and write_file() inside
the gluon.fileutils namespace that encapsulate the file access and ensure
that the file handles being used are properly closed.

When using web2py, you do not know where the current directory
I is, because it depends on how web2py is configured. The variable

N

W

w

THE PYTHON LANGUAGE 67

I request. folder contains the path to the current application. Paths can
be concatenated with the command os.path.join, discussed below.

2.14 exec, eval

Unlike Java, Python is a truly interpreted language. This means it has the
ability to execute Python statements stored in strings. For example:

>>> a = "print 'hello world'"
>>> exec(a)
‘hello world'

What just happened? The function exec tells the interpreter to call itself and
execute the content of the string passed as argument. It is also possible to
execute the content of a string within a context defined by the symbols in a
dictionary:

>>> a = "print b"

>>> ¢ = dict(b=3)

>>> exec(a, {}, c)
3

Here the interpreter, when executing the string a, sees the symbols defined
in c (b in the example), but does not see c or a themselves. This is different
than a restricted environment, since exec does not limit what the inner code
can do; it just defines the set of variables visible to the code.

A related function is eval, which works very much like exec except that it
expects the argument to evaluate to a value, and it returns that value.

>>> a = "3x4"
>>> b = eval(a)
>>> print b

12

2.15 import

The real power of Python is in its library modules. They provide a large and
consistent set of Application Programming Interfaces (APIs) to many system
libraries (often in a way independent of the operating system).

N

N

N

W

68 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

For example, if you need to use a random number generator, you can do:

>>> import random
>>> print random.randint(0, 9)
5

This prints a random integer between o and 9 (including 9), 5 in the example.
The function randint is defined in the module random. It is also possible to
import an object from a module into the current namespace:

>>> from random import randint
>>> print randint(0, 9)

or import all objects from a module into the current namespace:

>>> from random import *
>>> print randint(0, 9)

or import everything in a newly defined namespace:

>>> import random as myrand
>>> print myrand.randint(0, 9)

In the rest of this book, we will mainly use objects defined in modules os,
sys, datetime, time and cPickle.
All of the web2py objects are accessible via a module called gluon,
and that is the subject of later chapters. Internally, web2py uses
many Python modules (for example thread), but you rarely need to
access them directly.

In the following subsections we consider those modules that are most useful.

2.15.1 os

This module provides an interface to the operating system API. For example:

>>> import os
>>> os.chdir('..")
>>> os.unlink('filename_to_be_deleted')

Some of the os functions, such as chdir, MUST NOT be used in
web2py because they are not thread-safe.

os.path.join is very useful; it allows the concatenation of paths in an OS-
independent way:

>>> import os

ENE

N

N

N

w

-~

ol

THE PYTHON LANGUAGE 69

>>> a = os.path.join('path', 'sub_path')
>>> print a
path/sub_path

System environment variables can be accessed via:
>>> print os.environ

which is a read-only dictionary.

2.15.2 sys

The sys module contains many variables and functions, but the one we use
the most is sys.path. It contains a list of paths where Python searches for
modules. When we try to import a module, Python looks for it in all the
folders listed in sys.path. If you install additional modules in some location
and want Python to find them, you need to append the path to that location
to sys.path.

>>> import sys

>>> sys.path.append('path/to/my/modules")

When running webz2py, Python stays resident in memory, and there is only
one sys.path, while there are many threads servicing the HTTP requests. To
avoid a memory leak, it is best to check if a path is already present before
appending:

>>> path = 'path/to/my/modules'

>>> if not path in sys.path:
sys.path.append(path)

2.15.3 datetime

The use of the datetime module is best illustrated by some examples:

>>> import datetime

>>> print datetime.datetime.today()
2008-07-04 14:03:90

>>> print datetime.date.today()
2008-07-04

Occasionally you may need to time-stamp data based on the UTC time as
opposed to local time. In this case you can use the following function:

N

w

70 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

>>> import datetime

>>> print datetime.datetime.utcnow()

2008-07-04 14:03:90

The datetime module contains various classes: date, datetime, time and
timedelta. The difference between two date or two datetime or two time
objects is a timedelta:

>>> g = datetime.datetime(2008, 1, 1, 20, 30)

>>> b = datetime.datetime (2008, 1, 2, 20, 30)

>>c=Db - a

>>> print c.days

1

In web2py, date and datetime are used to store the corresponding SQL types

when passed to or returned from the database.

2.15.4 time

The time module differs from date and datetime because it represents time as
seconds from the epoch (beginning of 1970).

>>> import time
>>> t = time.time()
1215138737.571

Refer to the Python documentation for conversion functions between time in
seconds and time as a datetime.

2.15.5 cPickle

This is a very powerful module. It provides functions that can serialize
almost any Python object, including self-referential objects. For example,
let’s build a weird object:

>>> class MyClass(object): pass
>>> myinstance = MyClass()

>>> myinstance.x = 'something'
>>>a = [1 ,2, {'hello':'world'}, [3, 4, [myinstance]ll
and now:

>>> import cPickle
>>> b = cPickle.dumps(a)
>>> ¢ = cPickle.loads(b)

THE PYTHON LANGUAGE 71

In this example, b is a string representation of a, and c is a copy of a generated
by de-serializing b. cPickle can also serialize to and de-serialize from a file:

1 >>> cPickle.dump(a, open('myfile.pickle', 'wb'))
> >>> ¢ = cPickle.load(open('myfile.pickle', 'rb'))

3

Overview

3.1 Startup

web2py comes in binary packages for Windows and Mac OS X. They include
the Python interpreter so you do not need to have it pre-installed. There is
also a source code version that runs on Windows, Mac, Linux, and other Unix
systems. The source code package assumes that Python is already installed
on the computer. web2py requires no installation. To get started, unzip
the downloaded zip file for your specific operating system and execute the
corresponding web2py file.

On Unix and Linux (source distribution), run:
1 python web2py.py

On OS X (binary distribution), run:
1 open web2py.app

On Windows (binary webzpy distribution), run:
1 web2py.exe

On Windows (source webz2py distribution), run:

1 c:/Python27/python.exe web2py.exe
Attention, to run web2py on Windows from source you
must install first Mark Hammond’s win32 extensions from
http://sourceforge.net/projects/pywin32/.

74 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

The web2py program accepts various command line options which are
discussed later.

By default, at startup, web2py displays a startup window and then displays
a GUI widget that asks you to choose a one-time administrator password,
the IP address of the network interface to be used for the web server, and a
port number from which to serve requests. By default, web2py runs its web
server on 127.0.0.1:8000 (port 8ooo on localhost), but you can run it on any
available IP address and port. You can query the IP address of your network
interface by opening a command line and typing ipconfig on Windows or
ifconfig on OS X and Linux. From now on we assume web2py is running
on localhost (127.0.0.1:8000). Use 0.0.0.0:80 to run web2py publicly on any of
your network interfaces.

WEBZ2PY

Welcome fo...

web2py Web Framework

Created by Massimo Di Piero, Copyright 2007-2012
Version 2.4.1-alpha.2+timestamp.2012.12.27 06.44.33

If you do not provide an administrator password, the administration interface
is disabled. This is a security measure to prevent publicly exposing the admin
interface.

The administrative interface, admin, is only accessible from localhost unless
you run web2py behind Apache with mod_proxy. If admin detects a proxy,
the session cookie is set to secure and admin login does not work unless the
communication between the client and the proxy goes over HTTPS; this is a
security measure. All communications between the client and admin must
always be local or encrypted; otherwise an attacker would be able to perform
a man-in-the middle attack or a replay attack and execute arbitrary code on
the server.

OVERVIEW 75

After the administration password has been set, webzpy starts up the web

browser at the page:

1 http://127.0.0.1:8000/

If the computer does not have a default browser, open a web browser and

enter the URL.

Welcome

€'|©127.001

web2py™

Welcome ..o

Hello World

How did you get here?

1. You are successfully running web2py

2. You visited the ur Awelcome/default/index
3. Which called the fur
4. The output of the fi

a dictionary that was rendered by the view

Copyright © 2012

n index() located in the file web2py/applications/ws

Administrative Interface

Don't know what to do?

« Online examples

Icomelcontrollers/default.py

Powered by web2py

Clicking on "administrative interface" takes you to the login page for the

administration interface.

© Login to the Administrative Interface

Administrator Password
Login

LELEREIENEY English (US) 7 |

The administrator password is the password you chose at startup. Notice
that there is only one administrator, and therefore only one administrator
password. For security reasons, the developer is asked to choose a new
password every time web2py starts unless the <recycle> option is specified.
This is distinct from the authentication mechanism in web2py applications.

76 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

After the administrator logs into web2apy, the browser is redirected to the
"site" page.

©Deploy
ey en Googe App Engine) (DS 10 OpenShiL

This page lists all installed webzpy applications and allows the administrator
to manage them. web2py comes with three applications:

* An admin application, the one you are using right now.

* An examples application, with the online interactive documentation and
a replica of the web2py official website.

* A welcome application. This is the basic template for any other webzpy
application. It is referred to as the scaffolding application. This is also the
application that welcomes a user at startup.

Ready-to-use web2py applications are referred to as web2py appliances. You
can download many freely available appliances from [24]. web2py users are
encouraged to submit new appliances, either in open-source or closed-source
(compiled and packed) form.

From the admin application’s site page, you can perform the following
operations:

¢ install an application by completing the form on the bottom right of the
page. Give a name to the application, select the file containing a packaged
application or the URL where the application is located, and click "submit".

¢ uninstall an application by clicking the corresponding button. There is a
confirmation page.

* create a new application by choosing a name and clicking "create".

OVERVIEW 77

package an application for distribution by clicking on the corresponding
button. A downloaded application is a tar file containing everything,
including the database. You should not untar this file; it is automatically
unpackaged by web2py when installed with admin.

clean up an application’s temporary files, such as sessions, errors and
cache files.

enable/disable each application. When an application is disabled it cannot
be called remotely but it is not disabled form localhost. This means
disabled applications can still be accessed behind a proxy. An application
is disabled by creating a file called "DISABLED" in the application folder.
Users who try to access a disabled application will receive a 503 HTTP
error. You can use routes_onerror to customize the error page.

EDIT an application.
When you create a new application using admin, it starts as a
clone of the "welcome" scaffolding app with a "models/db.py"
that creates a SQLite database, connects to it, instantiates Auth,
Crud, and Service, and configures them. It also provides a
"controller /default.py" which exposes actions "index", "download",
"user" for user management, and "call" for services. In the following,
we assume that these files have been removed; we will be creating
apps from scratch.

web2py also comes with a wizard, described later in this chapter, that can

write an alternate scaffolding code for you based on layouts and plugins

available on the web and based on high level description of the models.

3.2 Simple examples

3.2.1 Say hello

Here, as an example, we create a simple web app that displays the message

"Hello from MyApp" to the user. We will call this application "myapp". We

will also add a counter that counts how many times the same user visits the

78 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

page.
You can create a new application simply by typing its name in the form on
the top right of the site page in admin.

© New simple application

Application nan1e*ﬂyapp Create

After you press [create], the application is created as a copy of the built-in
welcome application.

© Models @

daiabase adminisiraion

Edit

Edit) [y

create file with flename: Create

© Controllers @

sheil) (iest) (croniab,

© Views @

downioad layouis,

Edil) [y extends layouthtml

To run the new application, visit:
http://127.0.0.1:8000/myapp

Now you have a copy of the welcome application.

To edit an application, click on the edit button for the newly created
application.

The edit page tells you what is inside the application. Every webzpy
application consists of certain files, most of which fall into one of six
categories:

¢ models: describe the data representation.

¢ controllers: describe the application logic and workflow.

Moo

OVERVIEW 79

¢ views: describe the data presentation.

¢ languages: describe how to translate the application presentation to other
languages.

¢ modules: Python modules that belong to the application.
e static files: static images, CSS files [40, 41, 42], JavaScript files [43, 44], etc.
* plugins: groups of files designed to work together.

Everything is neatly organized following the Model-View-Controller design
pattern. Each section in the edit page corresponds to a subfolder in the
application folder.

Notice that clicking on section headings will toggle their content. Folder
names under static files are also collapsible.
Each file listed in the section corresponds to a file physically located
in the subfolder. Any operation performed on a file via the admin
interface (create, edit, delete) can be performed directly from the
shell using your favorite editor.

The application contains other types of files (database, session files, error
files, etc.), but they are not listed on the edit page because they are not
created or modified by the administrator; they are created and modified by
the application itself.

The controllers contain the logic and workflow of the application. Every
URL gets mapped into a call to one of the functions in the controllers
(actions). There are two default controllers: "appadmin.py" and "default.py".
appadmin provides the database administrative interface; we do not need
it now. "default.py” is the controller that you need to edit, the one that is
called by default when no controller is specified in the URL. Edit the "index"
function as follows:

def index():
return "Hello from MyApp"

Here is what the online editor looks like:

80 WEB2PY COMPLETE REFERE

|- editmyapp/controller

NCE MANUAL, 5TH EDITION

exposes:
edit views:

[sevea e nasn | .

-~ coding: utf-8 -*-
this file is released

26135407 2012

nder public domain and you can use without limitations

n the db (does streaming)
)

def index():

example action using the internationa
rendered by views/default/index.html

if you need a simple wiki simple repl
return auth.wikiQ

response. flash = T("elcome to web2py
return dict(message=T('Hello World'))

lization operator T and flash
or views/generic.htnl

ace the two lines below with

"

Save it and go back to the edit page. Click on the index link to visit the newly

created page.

When you visit the URL

1 http://127.0.0.1:8000/myapp/default/index

1

2

2

3

the index action in the default controller of the myapp application is called.

It returns a string that the browser displays for us. It should look like this:

|] 127.0.0.1:8000/myapp/d

Hello from MyApp

4 & | [0 127.0.0.1:8

e =

Now, edit the "index" function as follows:

def index():
return dict(message="Hello fr

om MyApp")

Also from the edit page, edit the view "default/index.html" (the view file

associated with the action) and completely replace the existing contents of

that file with the following:

<html>
<head></head>
<body>
<hl>{{=message}}</hl>

OVERVIEW 81

5 </body>

6 </html>
Now the action returns a dictionary defining a message. When an action
returns a dictionary, webzpy looks for a view with the name

+ [controller]/[function].[extension]

and executes it. Here [extension] is the requested extension. If no extension
is specified, it defaults to "html", and that is what we will assume here. Under
this assumption, the view is an HTML file that embeds Python code using
special {{ }} tags. In particular, in the example, the {{=message}} instructs
web2py to replace the tagged code with the value of the message returned by
the action. Notice that message here is not a web2py keyword but is defined
in the action. So far we have not used any web2py keywords.

If web2py does not find the requested view, it uses the "generic.html" view
that comes with every application.

If an extension other than "html" is specified ("json" for example),
and the view file "[controller]/[function].json” is not found, web2py
looks for the view "generic.json". web2py comes with generic.html,
generic.json, generic.jsonp, generic.xml, generic.rss, generic.ics (for
Mac Mail Calendar), generic.map (for embedding Google Maps),
and generic.pdf (based on fpdf). These generic views can be
modified for each application individually, and additional views can

be added easily.

Generic views are a development tool. In production every action

should have its own view. In fact, by default, generic views are only

enabled from localhost.

You can also specify a view with response.view =
I "default/something.html’

Read more on this topic in Chapter 10.

If you go back to "EDIT" and click on index, you will now see the following
HTML page:

[N

82 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

|] 127.0.0.1:8000/myapp/d

$ €@ [127.0.0.1 v =

Hello from MyApp

3.2.2 Debugging toolbar

For debugging purposes you can insert
{{=response.toolbar()}}

to the code in a view and it will show you some useful information, including
the request, response and session objects, and list all db queries with their
timing.

3.2.3 Let’s count

Let’s now add a counter to this page that will count how many times the
same visitor displays the page. web2py automatically and transparently
tracks visitors using sessions and cookies. For each new visitor, it creates
a session and assigns a unique "session_id". The session is a container for
variables that are stored server-side. The unique id is sent to the browser via
a cookie. When the visitor requests another page from the same application,
the browser sends the cookie back, it is retrieved by webapy, and the
corresponding session is restored.

To use the session, modify the default controller:

def index():
if not session.counter:
session.counter = 1
else:
session.counter += 1
return dict(message="Hello from MyApp", counter=session.counter)

Notice that counter is not a web2py keyword but session is. We are asking
web2py to check whether there is a counter variable in the session and, if not,

N

w

N w A W N R

OVERVIEW 83

to create one and set it to 1. If the counter is there, we ask web2py to increase
the counter by 1. Finally we pass the value of the counter to the view.

A more compact way to code the same function is this:

def index():
session.counter = (session.counter or 0) + 1
return dict(message="Hello from MyApp", counter=session.counter)

Now modify the view to add a line that displays the value of the counter:

<html>
<head></head>
<body>
<h1>{{=message}}</hl>
<h2>Number of visits: {{=counter}}</h2>
</body>
</html>

When you visit the index page again (and again) you should get the following
HTML page:

|] 127.0.0.1:8000/myapp/d

< € [127.001 o =
Hello from MyApp

Number of visits: 5

The counter is associated with each visitor, and is incremented each time the
visitor reloads the page. Different visitors see different counters.

3.2.4 Say my name

Now create two pages (first and second), where the first page creates a form,
asks the visitor’s name, and redirects to the second page, which greets the

visitor by name.

first second
avm

[CENEN

N

o u AW

N

84 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

Write the corresponding actions in the default controller:

def first():
return dict()

def second():
return dict()

Then create a view "default/first.html" for the first action, and enter:

{{extend 'layout.html'}}
<hl>What is your name?</hl>
<form action="second">
<input name="visitor_name" />
<input type="submit" />
</form>

Finally, create a view "default/second.html" for the second action:

{{extend 'layout.html'}}
<hl>Hello {{=request.vars.visitor_name}}</h1l>

In both views we have extended the basic "layout.html" view that comes with
web2py. The layout view keeps the look and feel of the two pages consistent.
The layout file can be edited and replaced easily, since it mainly contains
HTML code.

If you now visit the first page, type your name:

web2py™

Myapp

What is your hame?

Submit

Copyright © 2012 Powered by web2py

and submit the form, you will receive a greeting:

OVERVIEW 85

Myapp

Hello Massimo

Copyright © 2012 Powered by web2py

3.2.5 Postbacks

The mechanism for form submission that we used before is very common, but
it is not good programming practice. All input should be validated and, in
the above example, the burden of validation would fall on the second action.
Thus the action that performs the validation is different from the action that
generated the form. This tends to cause redundancy in the code.

A better pattern for form submission is to submit forms to the same action
that generated them, in our example the "first". The "first" action should
receive the variables, process them, store them server-side, and redirect the
visitor to the "second" page, which retrieves the variables. This mechanism
is called a postback.

second

Modify the default controller to implement self-submission:

1 def first():
2 if request.vars.visitor_name:

~

3

(€ T S Y

o

N

86 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

session.visitor_name = request.vars.visitor_name
redirect(URL('second'))
return dict()

def second():
return dict()

Then modify the "default/first.html" view:

{{extend 'layout.html'}}
What is your name?
<form>
<input name="visitor_name" />
<input type="submit" />
</form>
and the "default/second.html" view needs to retrieve the data from the

session instead of from the request.vars:

{{extend 'layout.html'}}
<hl>Hello {{=session.visitor_name or "anonymous"}}</hl>

From the point of view of the visitor, the self-submission behaves exactly the
same as the previous implementation. We have not added validation yet, but
it is now clear that validation should be performed by the first action.

This approach is better also because the name of the visitor stays in the
session, and can be accessed by all actions and views in the application
without having to be passed around explicitly.

Note that if the "second" action is ever called before a visitor name is set, it
will display "Hello anonymous" because session.visitor_name returns None.
Alternatively we could have added the following code in the controller
(inside the second function):

if not request.function=='first' and not session.visitor_name:
redirect (URL('first'))

This is an ad hoc mechanism that you can use to enforce authorization on
controllers, though see Chapter g for a more powerful method.

With web2py we can move one step further and ask web2py to generate the
form for us, including validation. web2py provides helpers (FORM, INPUT,
TEXTAREA, and SELECT/OPTION) with the same names as the equivalent
HTML tags. They can be used to build forms either in the controller or in the
view.

o u s W

N

OVERVIEW 87

For example, here is one possible way to rewrite the first action:

def first():
form = FORM(INPUT(_name='visitor_name', requires=IS_NOT_EMPTY()),
INPUT(_type='submit'))
if form.process().accepted:
session.visitor_name = form.vars.visitor_name
redirect (URL('second'))
return dict(form=form)
where we are saying that the FORM tag contains two INPUT tags. The
attributes of the input tags are specified by the named arguments starting
with underscore. The requires argument is not a tag attribute (because it does

not start by underscore) but it sets a validator for the value of visitor_name.

Here is yet another better way to create the same form:

def first():
form = SQLFORM. factory(Field('visitor_name',
label='what is your name?',
requires=IS_NOT_EMPTY()))
if form.process().accepted:
session.visitor_name = form.vars.visitor_name
redirect (URL('second'))
return dict(form=form)
The form object can be easily serialized in HTML by embedding it in the
"default/first. html" view.
{{extend 'layout.html'}}
{{=form}}
The form.process () method applies the validators and returns the form itself.
The form.accepted variable is set to True if the form was processed and passed
validation. If the self-submitted form passes validation, it stores the variables
in the session and redirects as before. If the form does not pass validation,

error messages are inserted into the form and shown to the user, as below:

88 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

| ® 127.0.0.1:50

&

web2py™

Errors in form, please check it out.

Myapp

What is yoLt name?:

Submit

In the next section we will show how forms can be generated automatically
from a model.

In all our examples we have used the session to pass the user name from the
first action to the second. We could have used a different mechanism and
passed data as part of a redirect URL:

def first():
form = SQLFORM. factory(Field('visitor_name', requires=IS_NOT_EMPTY()))
if form.process().accepted:
name = form.vars.visitor_name
redirect (URL('second',vars=dict(name=name)))
return dict(form=form)

def second():
name = request.vars.visitor_name or redirect(URL('first"'))
return dict(name=name)

Mind that in general it is not a good idea to pass data from one action to

another using the URL. It makes it harder to secure the application. It is
safer to store the data in a session.

3.2.6 Internationalization

Your code is likely to include hardcoded strings such as "What is your
name?". You should be able to customize strings without editing the code
and in particular insert translations for these strings in different languages.

OVERVIEW &9

In this way if a visitor has the language preference of the browser set to
"Italian", web2py will use the Italian translation for the strings, if available.
This feature of web2py is called "internationalization” and it is described in
more detail in the next chapter.

Here we just observe that in order to use this feature you should markup
strings that needs translation. This is done by wrapping a quoted string in
code such as

"What is your name?"

with the T operator:

T("What is your name?")

You can also mark for translations strings hardcoded in views. For example
<hl>What is your name?</hl>

becomes

<h1>{{=T("What is your name?")}}</hl>

It is good practice to do this for every string in the code (field labels, flash
messages, etc.) except for tables and field names.

Once the strings are identified and marked up, web2py takes care of almost
everything else. The admin interface also provides a page where you can
translate each string in the languages you desire to support.

web2py includes a powerful pluralization engine which is described

in the next chapter. It is integrated with both the internationalization

engine and the markmin renderer.

3.3 An image blog

Here, as another example, we wish to create a web application that allows the
administrator to post images and give them a name, and allows the visitors
of the web site to view the named images and submit comments (posts).

As before, from the site page in admin, create a new application called images,
and navigate to the edit page:

1

IRV IS

~

90 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

© Models @
database administration,

Eit)

Edt) [
create file with filename: [Create

© Controllers @

sheil) (test) (crontab

create file with filename: Create

O Views @
downioad iayouts,

) (models) (contioliers) ((views) (ianguages) (static) ((moduies) (_pivate/files)) (_piugins

We start by creating a model, a representation of the persistent data in the
application (the images to upload, their names, and the comments). First,
you need to create/edit a model file which, for lack of imagination, we call
"db.py". We assume the code below will replace any existing code in "db.py".

Models and controllers must have a

.py extension since they are Python code.

If the extension is not provided, it is appended by webzpy. Views instead
have a .html extension since they mainly contain HTML code.

Edit the "db.py" file by clicking the corresponding "edit" button:

-] design images

© Models ®
database administration

@D .

Eit) Fu

create file with filename: Create

127.0.0.1:8000/

s_db_py| -

and enter the following;:

db = DAL("sqlite://storage.sqlite")

db.define_table('image",
Field('title', unique=True),

Field('file', 'upload'),
format = '%(title)s"')

db.define_table('post',

OVERVIEW O1

Field('image_id', 'reference image'),
Field('author'),

Field('email'),

Field('body', 'text'))

db.image.title.requires = IS_NOT_IN_DB(db, db.image.title)
db.post.image_id.requires = IS_IN_DB(db, db.image.id, '%(title)s')
db.post.author.requires = IS_NOT_EMPTY ()

db.post.email.requires = IS_EMAIL()

db.post.body.requires = IS_NOT_EMPTY()

db.post.image_id.writable = db.post.image_id.readable = False

Let’s analyze this line by line.

Line 1 defines a global variable called db that represents the database
connection. In this case it is a connection to a SQLite database stored in
the file "applications/images/databases/storage.sqlite". When using SQLite,
if the database file does not exist, it is created. You can change the name of
the file, as well as the name of the global variable db, but it is convenient to
give them the same name, to make it easy to remember.

Lines 3-6 define a table "image". define_table is a method of the db object.
The first argument, "image", is the name of the table we are defining. The
other arguments are the fields belonging to that table. This table has a field
called "title", a field called "file", and a field called "id" that serves as the table
primary key ("id" is not explicitly declared because all tables have an id field
by default). The field "title" is a string, and the field "file" is of type "upload".
"upload" is a special type of field used by the web2py Data Abstraction Layer
(DAL) to store the names of uploaded files. web2py knows how to upload
files (via streaming if they are large), rename them safely, and store them.

When a table is defined, web2py takes one of several possible actions:
e if the table does not exist, the table is created;

e if the table exists and does not correspond to the definition, the table is
altered accordingly, and if a field has a different type, web2py tries to
convert its contents;

¢ if the table exists and corresponds to the definition, web2py does nothing.

This behavior is called "migration”. In web2py migrations are automatic, but

92 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

can be disabled for each table by passing migrate=False as the last argument
of define_table.

Line 6 defines a format string for the table. It determines how a record
should be represented as a string. Notice that the format argument can also
be a function that takes a record and returns a string. For example:

format=lambda row: row.title

Lines 8-12 define another table called "post". A post has an "author", an
"email" (we intend to store the email address of the author of the post),
a "body" of type "text" (we intend to use it to store the actual comment
posted by the author), and an "image_id" field of type reference that points
to db.image via the "id" field.

In line 14, db.image.title represents the field "title" of table "image". The
attribute requires allows you to set requirements/constraints that will be
enforced by web2py forms. Here we require that the "title" is unique:

IS _NOT_IN_DB(db, db.image.title)

Notice this is optional because it is set automatically given that Field(’title’,

unique=True).

The objects representing these constraints are called validators. Multiple
validators can be grouped in a list. Validators are executed in the order they
appear. IS_NOT_IN_DB(a, b) is a special validator that checks that the value of
a field b for a new record is not already in a.

Line 15 requires that the field "image_id" of table "post" is in db.image.id.
As far as the database is concerned, we had already declared this when we
defined the table "post”. Now we are explicitly telling the model that this
condition should be enforced by webzpy, too, at the form processing level
when a new comment is posted, so that invalid values do not propagate
from input forms to the database. We also require that the "image_id" be
represented by the "title", '%(title)s’, of the corresponding record.

Line 20 indicates that the field "image_id" of table "post" should not be shown
in forms, writable=False and not even in read-only forms, readable=False.

The meaning of the validators in lines 17-18 should be obvious.

OVERVIEW 03

Notice that the validator

db.post.image_id.requires = IS_IN_DB(db, db.image.id, 's(title)s')

can be omitted (and would be automatic) if we specify a format for referenced
table:

db.define_table('image', ..., format='%(title)s')

where the format can be a string or a function that takes a record and returns

a string.

Once a model is defined, if there are no errors, web2py creates an application
administration interface to manage the database. You access it via the
"database administration” link in the edit page or directly:
http://127.0.0.1:8000/images/appadmin

Here is a screenshot of the appadmin interface:

Images

€ [1127.001

web2py ™

Images

Available Databases and Tables

db_image New Record
db.pDSt New Record

Copyright @ 2012 Powered by web2py

This interface is coded in the controller called "appadmin.py”" and the
corresponding view "appadmin.html". From now on, we will refer to this
interface simply as appadmin. It allows the administrator to insert new

94 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

database records, edit and delete existing records, browse tables, and perform
database joins.

The first time appadmin is accessed, the model is executed and the tables are
created. The web2py DAL translates Python code into SQL statements that
are specific to the selected database back-end (SQLite in this example). You
can see the generated SQL from the edit page by clicking on the "sql.log" link
under "models". Notice that the link is not present until the tables have been

created.

If you were to edit the model and access appadmin again, web2py would
generate SQL to alter the existing tables. The generated SQL is logged into

"sql.log".

<<back | | Edit

|5 peek images/databases/

€ [127.001

timestamp: 2612.12.28T22:28:53.636438
CREATE TABLE image{
id INTEGER PRIMARY KEY AUTOINCREMENT,
title CHAR(512) UNIQUE,
file CHAR(512)
)i
success!
timestamp: 2612-12-28T22:28:53.811489
CREATE TABLE post(
id INTEGER PRIMARY KEY AUTOINCREMENT,
image_id INTEGER REFERENCES image (id) ON DELETE CASCADE,
author CHAR(512),
email CHAR(512),
body TEXT
)

success!

Powered by web2py™ created by Massimo Di Pierro 2012 - Admin language [EREICSR

Now go back to appadmin and try to insert a new image record:

OVERVIEW 05

Images

4| € [© 127.00.1:8000/i

Images

Database db Table image

New Record

Title: | ymage of the Earth

Flle: [Choose File | earth.jpg

Submit

Copyright © 2012 Powered by web2py
(S

web2py has translated the db.image.file "upload" field into an upload form
for the file. When the form is submitted and an image file is uploaded, the
file is renamed in a secure way that preserves the extension, it is saved with
the new name under the application "uploads" folder, and the new name is
stored in the db.image. file field. This process is designed to prevent directory
traversal attacks.

Notice that each field type is rendered by a widget. Default widgets can be
overridden.

When you click on a table name in appadmin, web2py performs a select of
all records on the current table, identified by the DAL query
db.image.id > 0

and renders the result.

96 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

t/db?query=db.image.id>0

Rows in Table

Query: db.image.id>0
Update:)

Delete:
submit

The "query” is a condition like "db.tablel.fieldl==value". Something like “db.tablel.field1==db.table.ield2" results in a SQL
JOIN.

Use (...)&(...) for AND, (...)(...) for OR, and ~(...) for NOT to build more complex queries.

“update" is an optional expression like “field1=newvalue®. You cannot update or delete the results of a JOIN

1 selected

image.id image.tile image.file
1 Image of the ... file

Import/Export

export as csv file

or import from csv file [Choose File | No file chosen import

You can select a different set of records by editing the DAL query and
pressing [Submit].

To edit or delete a single record, click on the record id number.

Because of the 1S_IN_DB validator, the reference field "image_id" is rendered
by a drop-down menu. The items in the drop-down are stored as keys
(db.image.id), but are represented by their db.image.title, as specified by
the validator.

Validators are powerful objects that know how to represent fields, filter field
values, generate errors, and format values extracted from the field.

The following figure shows what happens when you submit a form that does
not pass validation:

OVERVIEW Q7

Images

£ & | [1127.0.0.1:8 age

Database db Table post

8 Yl =

New Record

Image Id:

value not in database

Author:

enter a value

Email:

enter a valid email

Body:

i\ i i i.

enter a value

Submit

| Share

The same forms that are automatically generated by appadmin can also be
generated programmatically via the SQLFORM helper and embedded in user
applications. These forms are CSS-friendly, and can be customized.

Every application has its own appadmin; therefore, appadmin itself can be
modified without affecting other applications.

So far, the application knows how to store data, and we have seen how to
access the database via appadmin. Access to appadmin is restricted to the
administrator, and it is not intended as a production web interface for the
application; hence the next part of this walk-through. Specifically we want to
create:

* An "index" page that lists all available images sorted by title and links to
detail pages for the images.

N

98 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

* A "show/[id]" page that shows the visitor the requested image and allows
the visitor to view and post comments.

¢ A "download/[name]" action to download uploaded images.

This is represented schematically here:

‘ "’ . " b

Go back to the edit page and edit the "default.py" controller, replacing its
contents with the following;:

def index():

images = db().select(db.image.ALL, orderby=db.image.title)

return dict(images=images)
This action returns a dictionary. The keys of the items in the dictionary are
interpreted as variables passed to the view associated to the action. When
developing, if there is no view, the action is rendered by the "generic.html"
view that is provided with every web2py application.

The index action performs a select of all fields (db.image.ALL) from table
image, ordered by db.image.title. The result of the select is a Rows object
containing the records. Assign it to a local variable called images returned by
the action to the view. images is iterable and its elements are the selected rows.
For each row the columns can be accessed as dictionaries: images[0][’title’]
or equivalently as images[0].title.

If you do not write a view, the dictionary is rendered by "views/generic.html"
and a call to the index action would look like this:

N U A W N R

1

OVERVIEW 99

Images

& € (@ 127.00.1:800

web2py™

Images

images . 3 . 3
image.id imagetitle image.file

1 Image of the ... file

Copyright @ 2012 Powered by web2py

You have not created a view for this action yet, so web2py renders the set of
records in plain tabular form.

Proceed to create a view for the index action. Return to admin, edit
"default/index.html" and replace its content with the following:

{{extend 'layout.html'}}

<h1l>Current Images</hl>

{{for image in images:}}

{{=LI(A(image.title, _href=URL("show", args=image.id)))}}
{{pass}}

The first thing to notice is that a view is pure HTML with special {{...}} tags.
The code embedded in {{...}} is pure Python code with one caveat: indentation
is irrelevant. Blocks of code start with lines ending in colon () and end in
lines beginning with the keyword pass. In some cases the end of a block is
obvious from context and the use of pass is not required.

Lines 5-7 loop over the image rows and for each row image display:
LI(A(image.title, _href=URL('show', args=image.id))

This is a ...</1i> tag that contains an ... tag which
contains the image.title. The value of the hypertext reference (href attribute)
is:

URL('show', args=image.id)

100 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

i.e., the URL within the same application and controller as the current
request that calls the function called "show", passing a single argument to
the function, args=image.id. LI, A, etc. are web2py helpers that map to
the corresponding HTML tags. Their unnamed arguments are interpreted
as objects to be serialized and inserted in the tag’s innerHTML. Named
arguments starting with an underscore (for example _href) are interpreted
as tag attributes but without the underscore. For example _href is the href
attribute, _class is the class attribute, etc.

As an example, the following statement:
{{=LI(A('something', _href=URL('show', args=123))}}

is rendered as:

something</1i>

A handful of helpers (INPUT, TEXTAREA, OPTION and SELECT) also support some
special named attributes not starting with underscore (value, and requires).
They are important for building custom forms and will be discussed later.

Go back to the edit page. It now indicates that "default.py exposes index". By
clicking on "index", you can visit the newly created page:
http://127.0.0.1:8000/images/default/index

which looks like:

Images

& € (@ 127.0.0.1:800

Images

Current Images

+ Image of the Earth

Copyright @ 2012 Powered by web2py

If you click on the image name link, you are directed to:

1

1

OVERVIEW 101

http://127.0.0.1:8000/images/default/show/1

and this results in an error, since you have not yet created an action called
"show" in controller "default.py".

Let’s edit the "default.py" controller and replace its content with:

def index():
images = db().select(db.image.ALL, orderby=db.image.title)
return dict(images=images)

def show():
image = db.image(request.args(0,cast=int)) or redirect(URL('index"'))
db.post.image_id.default = image.id
form = SQLFORM(db.post)
if form.process().accepted:
response. flash = 'your comment is posted'
comments = db(db.post.image_id==image.id).select()
return dict(image=image, comments=comments, form=form)

def download():
return response.download(request, db)

The controller contains two actions: "show" and "download". The "show"
action selects the image with the id parsed from the request args and all
comments related to the image. "show" then passes everything to the view
"default/show.html".

The image id referenced by:

URL('show', args=image.id)

in "default/index.html", can be accessed as:

request.args(0,cast=int) from the "show" action. The cast=int argument is
optional but very important. It attempts to cast the string value passed in

the PATH_INFO into an int. On failure it raises a proper exception instead
of causing a ticket. One can also specify a redirect in case of failure to cast:

request.args(0,cast=int,otherwise=URL('error’))

Moreover db.image(...) is a shortcut for
db(db.image.id==...).select().first()

The "download" action expects a filename in request.args(0), builds a path
to the location where that file is supposed to be, and sends it back to the
client. If the file is too large, it streams the file without incurring any memory

O e

6
7
8
9
10

11

102 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

overhead.

Notice the following statements:

Line 7 creates an insert form SQLFORM for the db.post table using only
the specified fields.

Line 8 sets the value for the reference field, which is not part of the input
form because it is not in the list of fields specified above.

Line 9 processes the submitted form (the submitted form variables are in
request.vars) within the current session (the session is used to prevent
double submissions, and to enforce navigation). If the submitted form
variables are validated, the new comment is inserted in the db.post table;
otherwise the form is modified to include error messages (for example, if
the author’s email address is invalid). This is all done in line 9!.

Line 10 is only executed if the form is accepted, after the record is
inserted into the database table. response.flash is a web2py variable that
is displayed in the views and used to notify the visitor that something
happened.

Line 11 selects all comments that reference the current image.
The "download" action is already defined in the "default.py"
controller of the scaffolding application.

The "download" action does not return a dictionary, so it does not need a

view. The "show" action, though, should have a view, so return to admin

and create a new view called "default/show.html".

Edit this new file and replace its content with the following:

{{extend 'layout.html'}}
<h1l>Image: {{=image.title}}</hl>
<center>

<img width="200px"

src="{{=URL('download', args=image.file)}}" />

</center>
{{if len(comments):}}

<h2>Comments</h2>
<p>
{{for post in comments:}}

<p>{{=post.author}} says <i>{{=post.body}}</i></p>

{{pass}}</p>

1

OVERVIEW 103

{{else:}}
<h2>No comments posted yet</h2>
{{pass}}
<h2>Post a comment</h2>
{{=form}}
This view displays the image.file by calling the "download" action inside an
tag. If there are comments, it loops over them and displays each
one.

Here is how everything will appear to a visitor.

Images

€ | © 127.0.0.1:8000/images/default/show/1

Images ..o

Image: Image of the Earth

Comments

Massimo says Picture of the planet Earth from space

Post a comment

Author:

Email

Body

When a visitor submits a comment via this page, the comment is stored in
the database and appended at the bottom of the page.

3.3.1 Adding authentication

The web2py API for Role-Based Access Control is quite sophisticated, but
for now we will limit ourselves to restricting access to the show action to
authenticated users, deferring a more detailed discussion to Chapter 9.

To limit access to authenticated users, we need to complete three steps. In a
model, for example "db.py", we need to add:

from gluon.tools import Auth

104 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

> auth = Auth(db)
5 auth.define_tables(username=True)

In our controller, we need to add one action:

1 def user():
2 return dict(form=auth())

This is sufficient to enable login, register, logout, etc. pages. The default
layout will also show options to the corresponding pages in the top right
corner.

Images

€ [0 127001

Login~

2 Register

Images

© Login

Login
Username

Password:
Remember me (for 30 days)

Login | Register | Lost Password

Copyright © 2012 Powered by web2py

127.0.0.1:8000/images/default/user/login?_next=/images/default/show/1# | Share

We can now decorate the functions that we want to restrict, for example:

1 @auth.requires_login()
> def show():
3

Any attempt to access
1 http://127.0.0.1:8000/images/default/show/[image_id]
will require login. If the user is not logged it, the user will be redirected to

+ http://127.0.0.1:8000/images/default/user/login

N

3

OVERVIEW 105

images

€ |0 127.001

web2py™ i

Images

Login
Username:
Password:
Remember me (for 30 days)

Login | Register | Lost Password

Copyright © 2012 Powered by web2py

The user function also exposes, among others, the following actions:

http://127.0.0.1:8000/images/default/user/logout
http://127.0.0.1:8000/images/default/user/register
http://127.0.0.1:8000/images/default/user/profile
http://127.0.0.1:8000/images/default/user/change_password
http://127.0.0.1:8000/images/default/user/request_reset_password
http://127.0.0.1:8000/images/default/user/retrieve_username
http://127.0.0.1:8000/images/default/user/retrieve_password
http://127.0.0.1:8000/images/default/user/verify_email
http://127.0.0.1:8000/images/default/user/impersonate
http://127.0.0.1:8000/images/default/user/not_authorized

Now, a first-time user needs to register in order to be able to log in and read
or post comments.
Both the auth object and the user function are already defined in the
scaffolding application. The auth object is highly customizable and
can deal with email verification, registration approvals, CAPTCHA,
and alternate login methods via plugins.

3.3.2 Adding grids

We can improve this further using the SQLFORM.grid and SQLFORM.smartgrid
gadgets to create a management interface for our application:
@auth.requires_membership('manager")

def manage():
grid = SQLFORM.smartgrid(db.image, linked_tables=['post'])

N

w

106 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

return dict(grid=grid)

with associated "views/default/manage.html"

{{extend 'layout.html'}}
<h2>Management Interface</h2>

{{=grid}}

Using appadmin create a group "manager” and make some users members

of the group. They will not be able to access

http://127.0.0.1:8000/images/default/manage

and browse, search:

Images

& [© 127.00.1:8000/ir

&

efault/manage

web2py™

Images ..o

Management Interface
Images
+Add
Id Title File
file

1 Image of the Earth

Export: CSV CSV (hidden cols) HTML TSV (Excel compatible)

Copyright © 2012

Search Clear

Comments @View #Edit | @iDelete

1 records found

TSV (Excel compatible, hidden cols) XML

Powered by web2py

((snare

create, update and delete images and their comments:

OVERVIEW

Management Interface

Images

+Back | @view Comments

Id: 1
Title: Image of the Earth
Choose File | No file chosen [file])

delete

File:

Check to delete:

Submit

15chdob784c87e4c vy | By

3.3.3 Configuring the layout

107

You can configure the default layout by editing "views/layout.html" but you
can also configure it without editing the HTML. In fact, the "static/base.css"
stylesheet is well documented and described in Chapter 5. You can change
color, columns, size, borders and background without editing the HTML. If
you want to edit the menu, the title or the subtitle, you can do so in any
model file. The scaffolding app, sets default values of these parameters in

the file "models/menu.py":

response.title = request.application
response.subtitle = 'customize me!'
response.meta.author = 'you'
response.meta.description = 'describe your app'
response.meta.keywords = 'bla bla bla'

response.menu = [['Index', False, URL('index') 1 1

108 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

3.4 A simple wiki

In this section, we build a simple wiki from scratch using only low level APIs
(as opposed to using the built-in wiki capabilities of web2py demonstrated
in the next section). The visitor will be able to create pages, search them (by
title), and edit them. The visitor will also be able to post comments (exactly
as in the previous applications), and also post documents (as attachments to
the pages) and link them from the pages. As a convention, we adopt the
Markmin syntax for our wiki syntax. We will also implement a search page
with Ajax, an RSS feed for the pages, and a handler to search the pages
via XML-RPC [45]. The following diagram lists the actions that we need to
implement and the links we intend to build among them.

doconload/id

OVERVIEW 109

Start by creating a new scaffolding app, naming it "mywiki".

The model must contain three tables: page, comment, and document. Both
comment and document reference page because they belong to page. A
document contains a file field of type upload as in the previous images
application.

Here is the complete model:

db = DAL('sqlite://storage.sqlite")

from gluon.tools import *
auth = Auth(db)
auth.define_tables()

crud = Crud(db)

db.define_table('page’,
Field('title'),
Field('body', 'text'),
Field('created on', 'datetime', default=request.now),
Field('created by', 'reference auth_user', default=auth.user_id),
format="%(title)s")

db.define_table('post"',

Field('page_id', 'reference page'),

Field('body', 'text'),

Field('created on', 'datetime', default=request.now),
Field('created by', 'reference auth_user', default=auth.user_id))

db.define_table('document"',
Field('page_id', 'reference page'),
Field('name'),
Field('file', 'upload'),
Field('created on', 'datetime', default=request.now),
Field('created by', 'reference auth_user', default=auth.user_id),
format="'%(name)s")

db.page.title.requires = IS_NOT_IN_DB(db, 'page.title')
db.page.body.requires = IS_NOT_EMPTY()
db.page.created_by.readable = db.page.created_by.writable = False
db.page.created_on.readable = db.page.created on.writable = False

db.post.body.requires = IS_NOT_EMPTY()

db.post.page_id.readable = db.post.page_id.writable = False
db.post.created_by.readable = db.post.created_by.writable = False
db.post.created_on.readable = db.post.created_on.writable = False

db.document.name.requires = IS_NOT_IN_DB(db, 'document.name")

40

42

1

110 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

db.document.page_id.readable = db.document.page_id.writable = False
db.document.created_by.readable = db.document.created_by.writable = False
db.document.created_on.readable = db.document.created_on.writable = False

Edit the controller "default.py" and create the following actions:

¢ index: list all wiki pages

* create: add a new wiki page

® show: show a wiki page and its comments, and add new comments
¢ edit: edit an existing page

* documents: manage the documents attached to a page

* download: download a document (as in the images example)

¢ search: display a search box and, via an Ajax callback, return all matching
titles as the visitor types

e callback: the Ajax callback function. It returns the HTML that gets
embedded in the search page while the visitor types.

Here is the "default.py" controller:

def index():
""" this controller returns a dictionary rendered by the view
it lists all wiki pages
>>> index().has_key('pages')
True
pages = db().select(db.page.id,db.page.title,orderby=db.page.title)
return dict(pages=pages)

@auth.requires_login()

def create():
"""creates a new empty wiki page
form = SQLFORM(db.page).process(next=URL('index"'))
return dict(form=form)

def show():
"""shows a wiki page"""
this_page = db.page(request.args(0,cast=int)) or redirect(URL('index'))
db.post.page_id.default = this_page.id
form = SQLFORM(db.post).process() if auth.user else None
pagecomments = db(db.post.page_id==this_page.id).select()
return dict(page=this_page, comments=pagecomments, form=form)

N
v

OVERVIEW

@auth.requires_login()
def edit():
"""edit an existing wiki page"""
this_page = db.page(request.args(0,cast=int)) or redirect(URL('index"'))
form = SQLFORM(db.page, this_page).process(
next = URL('show',args=request.args))
return dict(form=form)

@auth.requires_login()

def documents():
"""browser, edit all documents attached to a certain page"""
page = db.page(request.args(0,cast=int)) or redirect(URL('index'))
db.document.page_id.default = page.id
db.document.page_id.writable = False
grid = SQLFORM.grid(db.document.page_id==page.id,args=[page.id])
return dict(page=page, grid=grid)

def user():
return dict(form=auth())

def download():
"""allows downloading of documents"""
return response.download(request, db)

def search():
"""an ajax wiki search page"""
return dict(form=FORM(INPUT(_id='keyword',_name='keyword',
_onkeyup="ajax('callback', ['keyword'], 'target');")),
target_div=DIV(_id="'target'))

def callback():
"""an ajax callback that returns a of links to wiki pages"""
query = db.page.title.contains(request.vars.keyword)
pages = db(query).select(orderby=db.page.title)
links = [A(p.title, _href=URL('show',args=p.id)) for p in pages]
return UL(xlinks)

111

Lines 2-6 constitute a comment for the index action. Lines 4-5 inside the

comment are interpreted by python as test code (doctest). Tests can be run

via the admin interface. In this case the tests verify that the index action runs

without errors.

Lines 18, 27, and 35 try to fetch a page record with the id in request.args(0).

Lines 13, 20 define and process create forms for a new page and a new

comment and

N

W

112 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

Line 28 defines and processes an update form for a wiki page.

Line 38 creates a grid object that allows to view, add and update the
comments linked to a page.

Some magic happens in line 51. The onkeyup attribute of the INPUT tag
"keyword" is set. Every time the visitor releases a key, the JavaScript code
inside the onkeyup attribute is executed, client-side. Here is the JavaScript
code:

ajax('callback', ['keyword'], 'target');

ajax is a JavaScript function defined in the file "web2py.js" which is included
by the default "layout.html". It takes three parameters: the URL of the action
that performs the synchronous callback, a list of the IDs of variables to be
sent to the callback (['keyword"]), and the ID where the response has to be
inserted ("target”).

As soon as you type something in the search box and release a key, the
client calls the server and sends the content of the 'keyword’ field, and,
when the sever responds, the response is embedded in the page itself as
the innerHTML of the "target’ tag.

The ‘target’ tag is a DIV defined in line 52. It could have been defined in the
view as well.

Here is the code for the view "default/create.html":

{{extend 'layout.html'}}
<hl>Create new wiki page</hl>

{{=form}}

Assuming you are registered and logged in, if you visit the create page, you
see the following:

W

o U &

OVERVIEW

€ | © 127.00.1:3000

web2py™

Mywiki

Create new wiki page

Tite: | My Main Page

Body: [iello, Today | made my first
i application

Submit

Here is the code for the view "default/index.html":

{{extend 'layout.html'}}
<hl>Available wiki pages</hl>
[{{=A('search', _href=URL('search'))}} 1

{{for page in pages:}}
{{=LI(A(page.title, _href=URL('show', args=page.id)))}}
{{pass}}
[{{=A('create page', _href=URL('create'))}} 1

It generates the following page:
ﬁ design mywiki

e

web2py™

Mywiki

Available wiki pages

[search]
My Main Page

[create page]

Copyright © 2012 Powered by web2py

[Share
|

Here is the code for the view "default/show.html":

113

o U R W

S © ® N

114 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

{{extend 'layout.html'}}
<h1l>{{=page.title}}</h1>
[{{=A('edit', _href=URL('edit', args=request.args))}}
| {{=A('documents', _href=URL('documents', args=request.args))}} l

{{=MARKMIN (page.body) }}
<h2>Comments</h2>
{{for post in comments:}}
<p>{{=db.auth_user[post.created_by].first_name}} on {{=post.created_on}}
says <i>{{=post.body}}</i></p>
{{pass}}

<h2>Post a comment</h2>

> {{=form}}

If you wish to use markdown syntax instead of markmin syntax:
from gluon.contrib.markdown import WIKI as MARKDOWN

and use MARKDOWN instead of the MARKMIN helper. Alternatively, you can choose
to accept raw HTML instead of markmin syntax. In this case you would
replace:

{{=MARKMIN (page.body) }}

with:

{{=XML (page.body) }}

(so that the XML does not get escaped, which web2py normally does by
default for security reasons).

This can be done better with:

{{=XML(page.body, sanitize=True)}}

By setting sanitize=True, you tell web2py to escape unsafe XML tags such as

"<script>", and thus prevent XSS vulnerabilities.

Now if, from the index page, you click on a page title, you can see the page
that you have created:

OVERVIEW 115

Mywiki

My Main Page
[edit | documents]
Hello. Today | made my first wiki application

Comments

Massimo on 2012-12-28 14:29:30 says Hi there,

Post a comment

Body

Here is the code for the view "default/edit.html":

{{extend 'layout.html'}}

<hl>Edit wiki page</hl>

[{{=A('show', _href=URL('show', args=request.args))}} l

{{=form}}

It generates a page that looks almost identical to the create page.

Here is the code for the view "default/documents.html":

{{extend 'layout.html'}}

<h1l>Documents for page: {{=page.title}}</h1l>

[{{=A('show', _href=URL('show', args=request.args))}} l

<h2>Documents</h2>

{{=grid}}

If, from the "show" page, you click on documents, you can now manage the
documents attached to the page.

116 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

& €[0127.001

web2py™

Mywiki ...

Documents for page: My Main Page

[show]

Documents

+add Search | Clear 1 records found
d Name File

1 Image of Earth file Qview /Edit iDelete

Export: CSV CSV (hidden cols) HTML TSV (Excel compatible) TSV (Excel compatible, hidden cols) XML

Copyright © 2012 Powered by el S L]

Finally here is the code for the view "default/search.html":

+ {{extend 'layout.html'}}

> <h1>Search wiki pages</hl>

5 [{{=A('listall', _href=URL('index'))}}1

4+ {{=form}}
{{=target_div}}

which generates the following Ajax search form:

Mywiki
el e [O 127.0.0.1:8000/myw

web2py™

MyWi ki customize me!

Search wiki pages

[listall]
my

« My Main Page

Copyright @ 2012 Powered by we‘P SHare

N

o u AW

OVERVIEW 117

You can also try to call the callback action directly by visiting, for example,
the following URL:

http://127.0.0.1:8000/mywiki/default/callback?keyword=wiki
If you look at the page source you see the HTML returned by the callback:
I made a Wiki

Generating an RSS feed of your wiki pages using web2py is easy because
webz2py includes gluon.contrib. rss2. Just append the following action to the
default controller:

def news():
"""generates rss feed form the wiki pages"""
response.generic_patterns = ['.rss']
pages = db().select(db.page.ALL, orderby=db.page.title)
return dict(
title = 'mywiki rss feed',
link = 'http://127.0.0.1:8000/mywiki/default/index",
description = 'mywiki news',
created_on = request.now,
items = [
dict(title = row.title,
link = URL('show', args=row.id),
description = MARKMIN(row.body).xml(),
created_on = row.created_on
) for row in pages])

and when you visit the page
http://127.0.0.1:8000/mywiki/default/news.rss

you see the feed (the exact output depends on the feed reader). Notice that
the dict is automatically converted to RSS, thanks to the.rss extension in the
URL.

118 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

—

mywiki rss feed - Mozilla Firefox

7} mywiki rss feed

&« 3 127.0.0.1:8000/mywiki/default/news.rss v e (A aQ & @~

. Subscribe to this feed using

@ Always use Live Bookmarks to subscribe to feeds.

Subscribe Now

mywiki rss feed
mywiki news

My Main Page
11/23/2011 09:38 AM

Hello today | made my Ffirst wiki application

web2py also includes feedparser to read third-party feeds.

Notice that the line:
response.generic_patterns = ['.rss']

instructs web2py to use generic views (in our case "views/generic.rss") when
the URL ends in the glob pattern ".rss". By default generic views are only
allowed from localhost for development purposes.

Finally, let’s add an XML-RPC handler that allows searching the wiki
programmatically:

service = Service()

@service.xmlrpc
def find_by(keyword):
"""finds pages that contain keyword for XML-RPC"""
return db(db.page.title.contains(keyword)).select().as_list()

def call():
"""exposes all registered services, including XML-RPC"""
return service()

Here, the handler action simply publishes (via XML-RPC), the functions
specified in the list. In this case, find_by. find_by is not an action (because it
takes an argument). It queries the database with .select() and then extracts
the records as a list with .response and returns the list.

woR W N =

" N

OVERVIEW 119

Here is an example of how to access the XML-RPC handler from an external
Python program.

>>> import xmlrpclib
>>> server = xmlrpclib.ServerProxy(
'http://127.0.0.1:8000/mywiki/default/call/xmlrpc')
>>> for item in server.find_by('wiki'):
print item['created on'], item['title']

The handler can be accessed from many other programming languages that
understand XML-RPC, including C, C++, C# and Java.

3.4.1 On date, datetime and time format

There are three different representations for each of the field types date,
datetime and time:

¢ the database representation
e the internal web2py representation
¢ the string representation in forms and tables

The database representation is an internal issue and does not affect the
code. Internally, at the web2py level, they are stored as datetime.date,
datetime.datetime and datetime.time object respectively and they can be
manipulated as such:

for page in db(db.page).select():
print page.title, page.day, page.month, page.year

When dates are converted to strings in forms they are converted using the
ISO representation

%Y -%m-%d %H:%M:%S

yet this representation is internationalized and you can use the admin
translation page to change the format to an alternate one. For example:
%M/%b/%Y %H:%M:%S

Mind that by default English is not translated because web2py assumes the
applications are written in English. If you want internationalization to work

for English you need to create the translation file (using admin) and you
need to declare that the application’s current language is something other

N

120 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

than english, for example:

T.current_languages = ['null']

3.5 The built-in web2py wiki

Now you can forget the code we have built-in the previous section (not what
you have learned about webzpy APISs, just the code of the specific example)
as we are going to provide an example of the built-in web2py wiki.

In fact, web2py comes with wiki capabilities including media attachments,
tags, tag cloud, page permissions, and support for oembed [46] and
components (chapter 14). This wiki can be used with any webzpy
application.

Notice the API of the built-in wiki is still considered experimental
I and small changes are still possible.

Here we assume we are starting from scratch from a simple clone of the
"welcome" application called "wikidemo". Edit the controller and replace the
"index" action with

def index(): return auth.wiki()

Done! You have a fully working wiki. At this point no page has been created
and in order to create pages you must be logged-in and you must be member
of a group called "wiki-editor" or "wiki-author". If you are logged-in as
administrator the "wiki-editor" group is created automatically and you are
made a member. The difference between editors and authors is that the
editors can create pages, edit and delete any page, while the authors can
create pages (with some optional restrictions) and can only edit/delete the
pages they have created.

The auth.wiki() function returns in a dictionary with a key content which
is understood by the scaffolding "views/default/index.html". You can make
your own view for this action:

{{extend 'layout.html'}}
{{=content}}

and add extra HTML or code as needed. You do not have to use the "index"
action to expose the wiki. You can use an action with a different name.

OVERVIEW 121

To try the wiki, simply login into admin, visit the page

http://127.0.0.1:8000/wikidemo/default/index

Then choose a slug (in the publishing business, a slug is a short name given

to an article that is in production) and you will be redirected to an empty

page where you can edit the content using MARKMIN wiki syntax. A new

menu item called "[wiki]" will allow you to create, search, and edit pages.
Wiki pages have URLs like:

http://127.0.0.1:8000/wikidemo/default/index/[slug]

Service pages have names which start by underscore:

http://127.0.0.1:8000/wikidemo/default/index/_create
http://127.0.0.1:8000/wikidemo/default/index/_search
http://127.0.0.1:8000/wikidemo/default/index/_could
http://127.0.0.1:8000/wikidemo/default/index/_recent
http://127.0.0.1:8000/wikidemo/default/index/_edit/...
http://127.0.0.1:8000/wikidemo/default/index/_editmedia/. ..
http://127.0.0.1:8000/wikidemo/default/index/_preview/...

"non

Try to create more pages such as "index", "aboutus"”, and "contactus". Try to
edit them.

The wiki method has the following signature:

def wiki(self, slug=None, env=None, render='markmin',

manage_permissions=False, force prefix='",
restrict_search=False, resolve=True,
extra=None, menugroups=None)

It takes the following arguments:

render which defaults to ’markmin’ but can be set equal to 'html’. It
determines the syntax of the wiki. We will discuss the markmin wiki
markup later. If you change it to HTML you can use a wysiwyg javascript
editor such as TinyMCE or NicEdit.

manage_permissions. This is set to False by default and only recognizes
permissions for "wiki-editor" and "wiki-author". If you change it to True
the create/edit page will give the option to specify by name the group(s)
whose members have permission to read and edit the page. There is a
group "everybody" which includes all users.

force_prefix. If set to something like '%(id)s-" it will restrict authors (not
editors) to creating pages with a prefix like "[user id]-[page name]". The

o U A W N R

@

122 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

prefix can contain the id ("%(id)s") or the username ("%(username)s") or
any other field from the auth_user table, as long as the corresponding
column contains a valid string that would pass URL validation.

® restrict_search. This defaults to False and any logged-in user can search
all wiki pages (but not necessary read or edit them). If set to True, authors
can search only their own pages, editors can search everything, other users
cannot search anything.

* menu_groups. This defaults to None and it indicates that wiki management
menu (search, create, edit, etc.) is always displayed. You can set it to a
list of group names whose members only can see this menu, for example
['wiki-editor’, 'wiki-author’]. Notice that even if the menu is exposed to
everybody that does not mean everybody is allowed to perform actions
listed in the menu since they are regulated by the access control system.

The wiki method has some additional parameters which will be explained
later: slug, env, and extra.

3.5.1 MARKMIN basics

The MARKMIN syntax allows you to markup bold text using =xboldxx, italic
text with ”italic”, and code text should be delimited by double inverted
quotes. Titles must be prefixed by a #, sections by ##, and sub-sections by ###.
Use a minus(-) to prefix an un-ordered item and plus(+) to prefix an ordered
item. URLs are automatically converted into links. Here is an example of
markmin text:

This is a title
this is a section title
this is a subsection title

Text can be xxbold*x*, ''italic'', '‘code' ' etc.
Learn more at:

http://web2py.com

You can use the extra parameter of auth.wiki to pass extra rendering rules to
the MARKMIN helper.

You can find more information about the MARKMIN syntax in chapter 5.

Nom

W

OVERVIEW 123

auth.wiki is more powerful than the barebones MARKMIN helpers,
supporting oembed and components.

You can use the env parameter of auth.wiki to expose functions to your wiki.
For example:

auth.wiki(env=dict(join=1lambda a,b,c:"%s-%s-%s" % (a,b,c)))

allows you to use the markup syntax:

@(join:1,2,3)

This calls the join function passed as extra with parameters a,b, c=1,2,3 and
will be rendered as 1-2-3.

3.5.2 Oembed protocol

You can type in (or cut-and-paste) any URL into a wiki page and it is
rendered as a link to the URL. There are exceptions:

¢ If the URL has an image extension, the link is embedded as an image,

.

e If the URL has an audio extension, the link is embedded as HTML5 audio

<audio/>.

e If the URL has a video extension, the link is embedded as HTML5 video

<video/>.

e If the URL has a MS Office or PDF extension, Google Doc Viewer is
embedded, showing the content of the document (only works for public
documents).

¢ If the URL points to a YouTube page, a Vimeo page, or a Flickr page,
web2py contacts the corresponding web service and queries it about the
proper way to embed the content. This is done using the oembed protocol.

Here is a complete list of supported formats:

Image (.PNG, .GIF, .JPG, .JPEG)
Audio (.WAV, .0GG, .MP3)
Video (.MOV, .MPE, .MP4, .MPG, .MPG2, .MPEG, .MPEG4, .MOVIE)

Supported via Google Doc Viewer:

© ® N o uw kW N R

® N o w kW N R

N

124 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

Microsoft Excel (.XLS and .XLSX)
Microsoft PowerPoint 2007 / 2010 (.PPTX)
Apple Pages (.PAGES)

Adobe PDF (.PDF)

Adobe Illustrator (.AI)

Adobe Photoshop (.PSD)

Autodesk AutoCad (.DXF)

Scalable Vector Graphics (.SVG)
PostScript (.EPS, .PS)

TrueType (.TTF)

xml Paper Specification (.XPS)

Supported by oembed:

flickr.com

youtube.com

hulu.com

vimeo.com

slideshare.net

gik.com

polleverywhere.com

wordpress.com

revision3.com

viddler.com

This is implemented in the web2py file gluon.contrib.autolinks and
specifically in the function expand_one. You can extend oembed support
by registering more services. This is done by appending an entry to the
EMBED_MAPS list:

from gluon.contrib.autolinks import EMBED_MAPS

EMBED_MAPS . append ((re.compile('http://vimeo.com/\S*"),
‘http://vimeo.com/api/oembed. json'))

3.5.3 Referencing wiki content

If you create a wiki page with slug "contactus" you can refer to this page as
@////contactus

Here @//// stands for

@/app/controller/function/

non

but "app", "controller”, and "function" are omitted thus assuming default.

Similarly you can use the wiki menu to upload a media file (for example an
image) linked to the page. The "manage media" page will show all files you

[O T S P

OVERVIEW 125

have uploaded and will show the proper expression to link the media file. If,
for example you upload a file "test.jpg" with title "beach", the link expression
will something like:

@////15/beach. jpg

@//// is the same prefix described before. 15 is the id of the record storing
the media file. beach is the title. .jpg is the extension of the original file.

If you cut and paste @////15/beach. jpg into wiki pages you embed the image.

Mind that media files are linked to pages and inherit access permission from
the pages.

3.5.4 Wiki menus

If you create a page with slug "wiki-menu" page it will be interpreted as a
description of the menu. Here is an example:

- Home > @////index
- Info > @////info
- web2py > http://google.com
- About us > @////aboutus
- Contact us > @////contactus

Each line a menu item. We used double dash for nested menu items. The >
symbols separates the menu item title from the menu item link.

Mind that the menu is appended to response.menu. It does not replace it. The
[wiki] menu item with service functions is added automatically.

3.5.5 Service functions

If, for example, you want to use the wiki to create an editable sidebar
you could create a page with slug="sidebar" and then embed it in your
layout.html with

{{=auth.wiki(slug="'sidebar"')}}

Notice that there is nothing special with the word "sidebar". Any wiki page
can be retrieved and embedded at any point in your code. This allows you
mix and match wiki functionalities with regular webzpy functionalities.

N

w

126 WEB2PY COMPLETE REFERENCE MANUAL, 5TH EDITION

Also note that auth.wiki('sidebar’) is the same as
auth.wiki(slug="sidebar’), since the slug kwarg is the first in
the method signature. The former gives a slightly simpler syntax.

You can also embed special wiki functions such as the search by tags:
{{=auth.wiki('_search')}}
or the tag cloud:

{{=auth.wiki('_cloud"')}}

3.5.6 Extending the auth.wiki feature

When your wiki-enabled app gets more complicated, perhaps you might
need to customize the wiki db records managed by the Auth interface or
expose customized forms for wiki CRUD tasks. For example, you might want
to customize a wiki table record representation or add a new field validator.
This is not allowed by default, since the wiki model is defined only after the
wiki interface is requested with the auth.wiki() method. To allow access to
the wiki specific db setup within the model of your app you must add the
following sentence to your model file (i.e. db.py)

Make sure this is called after the auth instance is created
and before any change to the wiki tables
auth.wiki(resolve=False)

By using the line above in your model, the wiki tables will be accessible (i.e.
wiki_page) for custom CRUD or other db tasks.
Note that you still have to call auth.wiki() in the controller or view in
order to expose the wiki interface, since the resolve=False parameter
instructs the auth object to just build the wiki model without any
other interface setup.

Also, by setting resolve to False in the method call, the wiki tables will be
now accessible through the app’s default db interface at <app>/appadmin for
managing wiki records.

Another customization possible is adding extra fields to the standard wiki
tables (in the same wa