
34 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP January/February 2014

Portable Parallel Programming

Portable Parallel Programs with
Python and OpenCL

Massimo Di Pierro | DePaul University

Open Common Language (OpenCL) runs on multicore GPUs, as well as other architectures including ordinary CPUs
and mobile devices. Combining OpenCL with numerical Python (numPy) and a new module—ocl, a Python-to-C
converter that lets developers use Python to write OpenCL kernels—creates a powerful framework for developing
efficient parallel programs for modern heterogeneous architectures.

I
n the past five years, consumer CPU clock speed
has stalled, hitting a practical limit of 3 GHz.
Beyond that limit, cooling the CPU becomes
impractical. CPU computing power has none-

theless continued to grow thanks to an increased
number of computing cores per CPU. At the same
time, we’ve seen the emergence of heterogeneous ar-
chitectures, in which the same device can host mul-
tiple CPUs and GPUs. To date, a state-of-the-art
AMD Opteron 8380 hosts 32 computing cores and
an Nvidia Tesla GPU K20X hosts 2,688 CUDA
cores. Programming these devices can be a chal-
lenge, as traditional programming languages are not
well equipped to deal with this level of concurrency.

In our guest editors’ introduction for the No-
vember/December 2012 issue of CiSE, David
Skinner and I gave examples of how some modern
programming languages—such as Clojure, Erlang,
and Haskell—tackle the problem of scaling on
multiple cores.1 Clojure uses transactional memory
to simplify multithreaded programming. Erlang
uses lightweight threads that can communicate
only via message passing. Haskell uses a library of
distributed data structures (a read-eval-print loop,
or REPL) optimized for different types of architec-
tures. However, these approaches aren’t as fast as C
code, and they aren’t designed to work on GPUs.
Nvidia developed the CUDA framework specifi-
cally for its GPUs.2 CUDA consists of a C-like
programming language that developers can use to
write computing kernels, which are compiled and

executed on the GPU cores in a multithreaded-like
fashion (although CUDA threads are managed
differently than regular threads). CUDA code can
also target LLVM (formerly Low-Level Virtual
Machine; see http://llvm.org), while MCuda3 en-
ables CUDA to run on multicore CPUs.

The Kronos Consortium—supported by Nvidia,
Advanced Micro Devices (AMD), Intel, and ARM—
has developed the Open Common Language frame-
work. OpenCL4 borrows many ideas from CUDA
but promises more portability and support for dif-
ferent architectures, including Intel/AMD CPUs,
Nvidia/ATI GPU, and ARM chips such as those
used on mobile phones. OpenCL consists of a C99
programming dialect. Similar to CUDA, OpenCL
programs define kernels that are queued to be execut-
ed in parallel on available devices. Kernels running
on the same device have access to a shared memory
area, as well as local memory areas. OpenCL provides
an API that performs loading and saving operations
between main memory and device memory. The
operations of loading and saving data, and queuing
and running kernels, are performed by a host pro-
gram. This program is usually written in C/C++, but
it’s also possible to run CUDA and OpenCL kernels
from a host program written in other languages, such
as Erlang and Python.

Here, I focus on running OpenCL from Python
using a library called pyOpenCL, created by Andreas
Klöckner.5 I’ll also discuss a Python library, called
ocl, that I developed, which allows just-in-time (JIT)

CISE-16-01-dipierro.indd 34 29/01/14 3:34 PM

www.computer.org/cise 35

conversion of Python code into OpenCL code. This
approach has no overhead because, once the code is
converted, it runs as native OpenCL code. Because
the Python ocl module performs a conversion purely
at the syntactical level—not at the semantic level—
any handwritten OpenCL code can be expressed us-
ing the corresponding Python syntax without loss of
performance. I don’t include benchmarks here, be-
cause for any handwritten OpenCL code, I would
be able to write Python code that generates the same
exact target OpenCL code (including the same vari-
able names). However, I have included examples
from this article in the online GitHub repo for ocl
so you can easily try them (see https://github.com/
mdipierro/ocl).

Ocl isn’t based—but takes inspiration from—
the Cython library,6 which coverts Python mod-
ules into C code.

A First Example with PyOpenCL
To better understand how it works, I should men-
tion that pyOpenCL is built on top of the Python
library for efficient array manipulations (that is,
numerical Python, or NumPy) and OpenCL. It lets
programmers embed OpenCL code into a Python
program in the form of a string containing the ker-
nel code. It also provides APIs to load a numPy ar-
ray on a computing device (GPU or CPU), queue
and run the kernel, and retrieve the computation
results. In pyOpenCL, object cleanup is tied to the
lifetime of objects, which makes it easier to write
correct leak- and crash-free code. Moreover, Open-
CL errors are automatically translated into Python
exceptions.

In the following examples, I won’t use py-
OpenCL directly, but rather the abstraction layer
provided by the ocl library. Here’s an example of a
simple Python program that we want to parallelize:

1 import numpy

2

3 n = 50000

4 a = numpy.random.rand(n).astype

(numpy.float32)

5 b = numpy.random.rand(n).astype

(numpy.float32)

6 c = numpy.zeros(n,dtype=numpy.float32)

7

8 for i in range(0, n):

9 c[i] = a[i] + b[i];

10

11 assert numpy.linalg.norm(c - (a + b))

== 0

The program creates three numPy arrays
(a,b,c), and fills the first two with random num-
bers and the latter with zeros. It then loops and
adds a[i]+b[i] into c[i]. Finally, it uses numpy.
linalg (the linear algebra module) to verify that
the norm of c-(a+b) is zero.

The “computing intensive” or kernel part of
this program is the for loop, which we want to
parallelize into a kernel (see Figure 1).

This program is similar to the previous one,
and they have many lines in common; however, it
also does several new things:

■■ defines a device object, which encapsulates
the OpenCL device context and the OpenCL
queue;

■■ defines device buffers and copies a into buffer
a, and b into buffer b;

■■ declares and compiles the kernels (kernels =
device.compile(...));

■■ runs the kernel function sum (kernels.
sum(...,[n],...)); and

■■ retrieves the array c from the device.

Notice how the kernel body consists of C99 code,
but it’s decorated using special macros: “__kernel,”
which indicates that the function is indeed a ker-
nel; and “__global,” which indicates that the arrays
to be passed as arguments to the function are in the

1 from ocl import Device
2 import numpy
3
4 n = 50000
5 a = numpy.random.rand(n).astype(numpy.float32)
6 b = numpy.random.rand(n).astype(numpy.float32)
7
8 device = Device()
9 a_buffer = device.buffer(source=a)
10 b_buffer = device.buffer(source=b)
11 c_buffer = device.buffer(size=b.nbytes)
12
13 kernels = device.compile("""
14 __kernel void sum(__global const float *a, /* a_buffer */

__global const float *b, /* b_buffer */15
16
17 int i = get_global_id(0); /* thread id */
18 c[i] = a[i] + b[i];

__global float *c) { /* c_buffer */

19 }
20 """)
21
22 kernels.sum(device.queue,[n],None,a_buffer,b_buffer,c_buffer)
23 c = device.retrieve(c_buffer)
24
25 assert numpy.linalg.norm(c - (a+b)) == 0

Figure 1. Scalar product using pyOpenCL.

CISE-16-01-dipierro.indd 35 29/01/14 3:34 PM

36 January/February 2014

Portable Parallel Programming

 device’s global memory. The function get_global_
id(0) returns the ID of the running kernel. The
number of running kernels is specified by the [n]
argument of the call to kernels.sum. The last three
arguments of this call are passed to the kernel func-
tion sum.

The Device class is defined in the ocl.py file
and, in terms of the lower level pyOpenCL APIs, it
looks like Figure 2.

Here, self.ctx is the device context and
self.queue is the device queue. The functions
buffer, retrieve, and compile map into the
corresponding pyOpenCL functions Buffer,
 enqueue copy, and Program, but use a more com-
pact syntax. For more details, see the official pyO-
penCL documentation (http://documen.tician.de/
pyopencl).

Laplace Solver
We can now implement a more complex algorithm.
Specifically, given a 2D discretized scalar field q as
input, we want to solve the following 2D Laplace
equation in u:

() (,) (,).∂ +∂ =x y u x y q x y2 2 (1)

If we discretize the second derivatives

∂ = − − + +xu x y u x h y u x y u x h y h2 22(,) ((,) (,) (,)) /

∂ = − − + +yu x y u x y h u x y u x y h h2 22(,) ((,) (,) (,)) /

substitute in Equation 1, and solve in u(x, y), we
obtain:

u(x, y) = 1/4(u(x + h, y) + u(x - h, y) +
u(x, y + h) + u(x, y - h) - h2 q(x, y)). (2)

We can thus solve Equation 1 by iterating Equa-
tion 2 until convergence. Here, q is the input, and
the initial value of u is irrelevant because it will
decorrelate during the convergence process.

We can now write a solver for this problem us-
ing pyOpenCL+ocl as shown in Figure 3.

This code differs from the previous code in
many ways:

■■ First, u, w, and q are 2D arrays (w does not ap-
pear in the equations, but it will be used as
temporary storage).

■■ Next, q is initialized by setting its value at +1
or -1 at some random sites.

■■ The kernel solve runs on a 2D grid, and therefore
each running instance is identified by two num-
bers, x and y, determined by the calls to get_glob-
al_id(0) and get_global_id(1), respectively.

■■ The kernel is compiled at runtime, therefore
the value of n is passed to the kernel via string
replacement. This is a trick, but it illustrates the
possibility of dynamically generating OpenCL
code at runtime.

■■ In the kernel, XY is a variable that stores the 1D
index corresponding to the x, y coordinates.

1 import numpy
2 import pyopencl as pcl
3
4 class Device(object):
5 flags = pcl.mem_flags
6 def __init__ (self):
7 self.ctx = pcl.create_some_context()
8 self.queue = pcl.CommandQueue(self.ctx)
9 def buffer(self,source=None,size=0,mode=pcl.mem_flags.READ_WRITE):
10 if source is not None: mode = mode|pcl.mem_flags.COPY_HOST_PTR
11 buffer = pcl.Buffer(self.ctx,mode, size=size, hostbuf=source)
12 return buffer
13 def retrieve(self,buffer,shape=None,dtype=numpy.float32):
14 output = numpy.zeros(shape or buffer.size/4,dtype=dtype)
15 pcl.enqueue_copy(self.queue, output, buffer)
16 return output
17 def compile(self,kernel):
18 return pcl.Program(self.ctx,kernel).build()

Figure 2. Part of the ocl library, the Device class creates an abstration layer on top of pyOpenCL.

CISE-16-01-dipierro.indd 36 29/01/14 3:34 PM

www.computer.org/cise 37

Notice that, from the device’s viewpoint, all
buffers are 1D C-style arrays.

■■ Finally, the solve kernel is called within the loop
in k. The [n,n] argument specifies that we want
to run one kernel for each x,y, where x = 0...n - 1
and y = 0...n - 1. Because the kernel uses u as in-
put and as output, to avoid concurrency issues, we
store the output in a temporary array w and swap
u with w after each iteration. For didactic purpos-
es, we don’t check convergence; we simply iterate
Equation 2 a fixed number of times.

We use the Canvas library (https://github.com/
mdipierro/canvas), built on top of the matplotlib

plotting library, to generate an 2D image of the
output field u. Figure 4 shows the output of a ran-
dom input. In this implementation, we assume a
choice of units such that h ≡ 1.

Laplace Solver with ocl
Mixing Python syntax with C syntax can make
programs difficult to read and error prone (a syn-
tax error in the kernel might result in an obscure
runtime error, for example). A possible solution to
this problem consists of coding the kernels them-
selves in Python. There are two libraries for doing
this: ocl and Clyther (https://github.com/srossross/
Clyther/) both are based on the Meta decompiler.

Figure 3. Laplace solver with pyOpenCL using the Device class.

1 from ocl import Device
2 from canvas import Canvas
3 from random import randint, choice
4 import numpy
5
6 n = 300
7 q = numpy.zeros((n,n), dtype=numpy.float32)
8 u = numpy.zeros((n,n), dtype=numpy.float32)
9 w = numpy.zeros((n,n), dtype=numpy.float32)
10
11 for k in range(n):
12 q[randint(1, n-1),randint(1, n-1)] = choice((-1,+1))
13
14 device = Device()
15 q_buffer = device.buffer(source=q, mode=device.flags.READ_ONLY)
16 u_buffer = device.buffer(source=u)
17 w_buffer = device.buffer(source=w)
18
19
20 kernels = device.compile("""
21 __kernel void solve(__global float *w,

__global const float *u,22
__global const float *q) {32

24 int x = get_global_id(0);
25 int y = get_global_id(1);
26 int xy = y*WIDTH + x, up, down, left, right;
27 if(y!=0 && y!=WIDTH-1 && x!=0 && x!=WIDTH-1) {
28 up=xy+WIDTH; down=xy-WIDTH; left=xy-1; right=xy+1;
29 w[xy] = 1.0/4.0*(u[up]+u[down]+u[left]+u[right] - q[xy]);
30 }
31 }
32 """.replace('WIDTH',str(n)))
33
34 for k in range(1000):
35 kernels.solve(device.queue, [n,n], None, w_buffer, u_buffer, q_buffer)
36 (u_buffer, w_buffer) = (w_buffer, u_buffer)
37
38 u = device.retrieve(u_buffer,shape=(n,n))
39
40 Canvas().imshow(u).save(filename='plot.png')

CISE-16-01-dipierro.indd 37 29/01/14 3:34 PM

38 January/February 2014

Portable Parallel Programming

Here, we use ocl, which I specifically designed to
work with pyOpenCL.

We rewrite the Laplace solver as Figure 5
shows.

Most of the code is the same as in Figure 3,
except for the solve kernel; here, the kernel is a
Python function “decorated” with @device.com-
piler.define_kernel(...). This decorator per-
forms introspection of the function at runtime,
converts the body of the function into an Abstract
Syntax Tree (AST), serializes the AST into C99/
OpenCL code, and compiles it using pyOpenCL.
This lets us write OpenCL code using Python
syntax.

One complication is that C99/OpenCL is
a statically typed language, while Python is only
strongly typed. We thus need a way to declare
the type for variables in Python. For the function

arguments, we can do this in the decorator argu-
ments. For example:

w = "global:const:ptr_float"

is converted to

__global const float *w.

For local variables, we do this through the pseudo-
casting operators, such as new_int and new_float.
For example:

xy = new_int(x*n+y)

is converted into

int xy = x*n+y;.

Variable types must be declared when first as-
signed. The converter checks that this is the case
to prevent further and more obscure compile time
errors. The return type is determined automati-
cally, but you must return a variable (or None), not
an expression. Table 1 shows how other types are
converted.

The goal of ocl isn’t to translate arbitrary Py-
thon code into C99/OpenCL, but rather to allow
the use of Python syntax to write OpenCL. This
means that only C99/OpenCL variable types are
allowed; Python types, such as lists and diction-
aries, aren’t. Moreover, all functions called in the
Python code that constitutes the body of the solve
function are intended to be OpenCL functions,
not Python functions.

With ocl, you can define multiple kernels within
the same program and call them when needed. You
can also use the @device.compiler.define(...)
decorator to define other functions to be executed on
the device. They will be visible and callable by the ker-
nels, but they won’t be callable from the host program.

We can pass constants from the Python con-
text to the OpenCL context as follows: device.
compile(..., constants = dict(n = n)). Ad-
ditional C files can be included using the syntax,
device.compile(..., includes = ['#include

<math.h>']), where includes is a list of #include
statements.

The ocl library also contains a decorator to con-
vert a Python function into C99 and compile it
at runtime without using pyOpenCL, as well as a
decorator to convert a Python function into a Java-
Script function (which is beyond this article’s scope).

0

50

100

150

200

250

0 50 100 150 200
x

y

250

Figure 4. The output of the Laplace program. This
output represents the 2D electrostatic potential for a
random charge distribution.

Table 1. Converting ocl to C99/OpenCL.

Ocl C99/OpenCL

a = new_type(...) type a = ...;

a = new_prt_type(...) type *a = ...;

a = new_prt_prt_type(...) type **a = ...;

None Null

ADDR(x) &x

REFD(x) *x

CAST(prt_type,x) (type*)x

CISE-16-01-dipierro.indd 38 29/01/14 3:34 PM

www.computer.org/cise 39

Often, the addition of a new layer adds com-
plexity and makes debugging more difficult. That
isn’t the case here. Although I use Python syntax to
generate OpenCL code, the generated code is state-
ment-by-statement equivalent to Python’s source
code, including variable names. The conversion
layer helps debugging, because it prevents typical
typographical errors, such as unbalanced brackets,
missing semicolons, and the use of undefined sym-
bols. If the Python code is syntactically valid (and
that’s easier to check than the OpenCL code), then
the generated OpenCL is also syntactically valid.
Logic errors are still possible, as are misspellings

of external function names. The generated code is
saved and it can be debugged as native OpenCL.
Mapping the generated code back into the source
Python code is trivial.

OpenCL is the only framework for writing por-
table applications that work on CPU, GPUs,

and mobile devices. Yet programming into na-
tive OpenCL code embedded into C/C++ code is
very complex and is a major barrier to entry for
scientists. Further, while Python—thanks to the
numPy libraries—has established itself as a new

5
6 n = 300
7 q = numpy.zeros((n,n), dtype=numpy.float32)
8 u = numpy.zeros((n,n), dtype=numpy.float32)
9 w = numpy.zeros((n,n), dtype=numpy.float32)
10
11 for k in range(n):
12 q[randint(1, n-1),randint(1, n-1)] = choice((-1,+1))
13
14 device = Device()
15 q_buffer = device.buffer(source=q, mode=device.flags.READ_ONLY)
16 u_buffer = device.buffer(source=u)
17 w_buffer = device.buffer(source=w)
18
19 @device.compiler.define_kernel(
20 w='global:ptr_float',
21 u='global:const:ptr_float',
22 q='global:const:ptr_float')
23 def solve(w,u,q):
24 x = new_int(get_global_id(0))
25 y = new_int(get_global_id(1))
26 xy = new_int(x*n+y)
27 if y!=0 and y!=n-1 and x!=0 and x!=n-1:
28 up = new_int(xy-n)
29 down = new_int(xy+n)
30 left = new_int(xy-1)
31 right = new_int(xy+1)
32 w[xy] = 1.0/4*(u[up]+u[down]+u[left]+u[right] - q[xy])
33
34 kernels = device.compile(constants=dict(n=n))
35
36 for k in range(1000):
37 kernels.solve(device.queue, [n,n], None, w_buffer, u_buffer, q_buffer)
38 (u_buffer, w_buffer) = (w_buffer, u_buffer)
39
40 u = device.retrieve(u_buffer,shape=(n,n))
41
42 Canvas().imshow(u).save(filename='plot.png')

1 from ocl import Device
2 from canvas import Canvas
3 from random import randint, choice
4 import numpy

Figure 5. Laplace solver with ocl.

CISE-16-01-dipierro.indd 39 29/01/14 3:34 PM

40 January/February 2014

Portable Parallel Programming

standard for scientific computing, it can’t take
advantage of modern hardware because the inter-
preter serializes all running code (including mul-
tithreaded code). Fortunately, pyOpenCL solves
this by letting scientists combine the best of both
worlds: using Python for the overall workflow, in-
put/output, and plotting; and using OpenCL for
the code’s computing-intensive parts. Here, I took
this a step further with ocl, which converts Python
code into OpenCL code at runtime.

Acknowledgments
I thank Andreas Klöckner for pyOpenCL and the ex-
cellent documentation, and Alan Etkin and Jonathan
Gemmell for proofreading this article.

References
1. M. Di Pierro and D. Skinner, “Concurrency in Mod-

ern Programming Languages,” Computing in Science
& Engineering, vol. 14, no. 6, 2012, pp. 8–12.

2. Nvidia Developer Zone, CUDA C Programming
Guide, Nvidia; http://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html.

3. J.A. Stratton et al., “MCUDA: An Efficient Imple-
mentation of CUDA Kernels for Multi-Core CPUs,”
Proc. Int’ l Workshop Languages and Compilers for
Parallel Computing, LNCS 5335, 2008, pp. 16–30.

4. J.E. Stone, D. Gohara, and G. Shi, “OpenCL: A
Parallel Programming Standard for Heterogeneous
Computing Systems,” Computing in Science & Engi-
neering, vol. 12, no. 3, 2010, pp. 66–73.

5. A. Klöckner et al., “PyCUDA and PyOpenCL: A
Scripting-Based Approach to GPU Run-Time Code
Generation,” Parallel Computing, vol. 38, no. 3,
2012, pp. 157–174.

6. S. Behnel et al., “Cython: The Best of Both Worlds,”
Computing in Science & Eng., vol. 13, no. 2, 2011,
pp. 31–39.

Massimo Di Pierro is an associate professor at DePaul
University’s School of Computing, where he manages
the master’s program in computational finance and
teaches courses in scientific computing, Monte Carlo
simulation, parallel programming, and Web develop-
ment. Di Pierro has a PhD in high-energy theoretical
physics from the University of Southampton, UK. Con-
tact him at mdipierro@cs.depaul.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

NEW
STORE

Save up to

40%
on selected articles, books,

and webinars.

Find the latest trends
and insights for your

• presentations
• research
• events

webstore.computer.org

CISE-16-01-dipierro.indd 40 29/01/14 3:34 PM

