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Portable Parallel Programming

Portable Parallel Programs with  
Python and OpenCL

Massimo Di Pierro | DePaul University

Open Common Language (OpenCL) runs on multicore GPUs, as well as other architectures including ordinary CPUs 
and mobile devices. Combining OpenCL with numerical Python (numPy) and a new module—ocl, a Python-to-C 
converter that lets developers use Python to write OpenCL kernels—creates a powerful framework for developing 
efficient parallel programs for modern heterogeneous architectures.

I
n the past five years, consumer CPU clock speed 
has stalled, hitting a practical limit of 3 GHz. 
Beyond that limit, cooling the CPU becomes 
impractical. CPU computing power has none-

theless continued to grow thanks to an increased 
number of computing cores per CPU. At the same 
time, we’ve seen the emergence of heterogeneous ar-
chitectures, in which the same device can host mul-
tiple CPUs and GPUs. To date, a state-of-the-art 
AMD Opteron 8380 hosts 32 computing cores and 
an Nvidia Tesla GPU K20X hosts 2,688 CUDA 
cores. Programming these devices can be a chal-
lenge, as traditional programming languages are not 
well equipped to deal with this level of concurrency.

In our guest editors’ introduction for the No-
vember/December 2012 issue of CiSE, David 
Skinner and I gave examples of how some modern 
programming languages—such as Clojure, Erlang, 
and Haskell—tackle the problem of scaling on 
multiple cores.1 Clojure uses transactional memory 
to simplify multithreaded programming. Erlang 
uses lightweight threads that can communicate 
only via message passing. Haskell uses a library of 
distributed data structures (a read-eval-print loop, 
or REPL) optimized for different types of architec-
tures. However, these approaches aren’t as fast as C 
code, and they aren’t designed to work on GPUs. 
Nvidia developed the CUDA framework specifi-
cally for its GPUs.2 CUDA consists of a C-like 
programming language that developers can use to 
write computing kernels, which are compiled and 

executed on the GPU cores in a multithreaded-like 
fashion (although CUDA threads are managed 
differently than regular threads). CUDA code can 
also target LLVM (formerly Low-Level Virtual 
Machine; see http://llvm.org), while MCuda3 en-
ables CUDA to run on multicore CPUs.

The Kronos Consortium—supported by Nvidia, 
Advanced Micro Devices (AMD), Intel, and ARM—
has developed the Open Common Language frame-
work. OpenCL4 borrows many ideas from CUDA 
but promises more portability and support for dif-
ferent architectures, including Intel/AMD CPUs, 
Nvidia/ATI GPU, and ARM chips such as those 
used on mobile phones. OpenCL consists of a C99 
programming dialect. Similar to CUDA, OpenCL 
programs define kernels that are queued to be execut-
ed in parallel on available devices. Kernels running 
on the same device have access to a shared memory 
area, as well as local memory areas. OpenCL provides 
an API that performs loading and saving operations 
between main memory and device memory. The 
operations of loading and saving data, and queuing 
and running kernels, are performed by a host pro-
gram. This program is usually written in C/C++, but 
it’s also possible to run CUDA and OpenCL kernels 
from a host program written in other languages, such 
as Erlang and Python.

Here, I focus on running OpenCL from Python 
using a library called pyOpenCL, created by Andreas 
Klöckner.5 I’ll also discuss a Python library, called 
ocl, that I developed, which allows just-in-time (JIT) 
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conversion of Python code into OpenCL code. This 
approach has no overhead because, once the code is 
converted, it runs as native OpenCL code. Because 
the Python ocl module performs a conversion purely 
at the syntactical level—not at the semantic level—
any handwritten OpenCL code can be expressed us-
ing the corresponding Python syntax without loss of 
performance. I don’t include benchmarks here, be-
cause for any handwritten OpenCL code, I would 
be able to write Python code that generates the same 
exact target OpenCL code (including the same vari-
able names). However, I have included examples 
from this article in the online GitHub repo for ocl 
so you can easily try them (see https://github.com/
mdipierro/ocl).

Ocl isn’t based—but takes inspiration from—
the Cython library,6 which coverts Python mod-
ules into C code.

A First Example with PyOpenCL
To better understand how it works, I should men-
tion that pyOpenCL is built on top of the Python 
library for efficient array manipulations (that is, 
numerical Python, or NumPy) and OpenCL. It lets 
programmers embed OpenCL code into a Python 
program in the form of a string containing the ker-
nel code. It also provides APIs to load a numPy ar-
ray on a computing device (GPU or CPU), queue 
and run the kernel, and retrieve the computation 
results. In pyOpenCL, object cleanup is tied to the 
lifetime of objects, which makes it easier to write 
correct leak- and crash-free code. Moreover, Open-
CL errors are automatically translated into Python 
exceptions.

In the following examples, I won’t use py-
OpenCL directly, but rather the abstraction layer 
provided by the ocl library. Here’s an example of a 
simple Python program that we want to parallelize:

1 import numpy

2

3 n = 50000

4  a = numpy.random.rand(n).astype 

(numpy.float32)

5  b = numpy.random.rand(n).astype 

(numpy.float32)

6  c = numpy.zeros(n,dtype=numpy.float32)

7

8 for i in range(0, n):

9  c[i] = a[i] + b[i];

10

11  assert numpy.linalg.norm(c - (a + b)) 

== 0

The program creates three numPy arrays 
(a,b,c), and fills the first two with random num-
bers and the latter with zeros. It then loops and 
adds a[i]+b[i] into c[i]. Finally, it uses numpy.
linalg (the linear algebra module) to verify that 
the norm of c-(a+b) is zero.

The “computing intensive” or kernel part of 
this program is the for loop, which we want to 
parallelize into a kernel (see Figure 1).

This program is similar to the previous one, 
and they have many lines in common; however, it 
also does several new things:

■■ defines a device object, which encapsulates 
the OpenCL device context and the OpenCL 
queue;

■■ defines device buffers and copies a into buffer 
a, and b into buffer b;

■■ declares and compiles the kernels (kernels = 
device.compile(...));

■■ runs the kernel function sum (kernels.
sum(...,[n],...)); and

■■ retrieves the array c from the device.

Notice how the kernel body consists of C99 code, 
but it’s decorated using special macros: “__kernel,” 
which indicates that the function is indeed a ker-
nel; and “__global,” which indicates that the arrays 
to be passed as arguments to the function are in the 

1 from ocl import Device 
2 import numpy 
3
4 n = 50000 
5 a = numpy.random.rand(n).astype(numpy.float32) 
6 b = numpy.random.rand(n).astype(numpy.float32) 
7
8 device = Device() 
9 a_buffer = device.buffer(source=a) 
10 b_buffer = device.buffer(source=b) 
11 c_buffer = device.buffer(size=b.nbytes) 
12
13 kernels = device.compile(""" 
14  __kernel void sum(__global const float *a, /* a_buffer */ 

__global const float *b, /* b_buffer */15
16
17  int i = get_global_id(0); /* thread id */ 
18  c[i] = a[i] + b[i]; 

__global float *c) {  /* c_buffer */

19  } 
20  """) 
21
22 kernels.sum(device.queue,[n],None,a_buffer,b_buffer,c_buffer)
23 c = device.retrieve(c_buffer) 
24
25 assert numpy.linalg.norm(c - (a+b)) == 0 

Figure 1. Scalar product using pyOpenCL.
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 device’s global memory. The function get_global_ 
id(0) returns the ID of the running kernel. The 
number of running kernels is specified by the [n] 
argument of the call to kernels.sum. The last three 
arguments of this call are passed to the kernel func-
tion sum.

The Device class is defined in the ocl.py file 
and, in terms of the lower level pyOpenCL APIs, it 
looks like Figure 2.

Here, self.ctx is the device context and 
self.queue is the device queue. The functions 
buffer, retrieve, and compile map into the 
corresponding pyOpenCL functions Buffer, 
 enqueue copy, and Program, but use a more com-
pact syntax. For more details, see the official pyO-
penCL documentation (http://documen.tician.de/
pyopencl).

Laplace Solver
We can now implement a more complex algorithm. 
Specifically, given a 2D discretized scalar field q as 
input, we want to solve the following 2D Laplace 
equation in u:

( ) ( , ) ( , ).∂ +∂ =x y u x y q x y2 2  (1)

If we discretize the second derivatives

∂ = − − + +xu x y u x h y u x y u x h y h2 22( , ) ( ( , ) ( , ) ( , )) /

∂ = − − + +yu x y u x y h u x y u x y h h2 22( , ) ( ( , ) ( , ) ( , )) /

substitute in Equation 1, and solve in u(x, y), we 
obtain:

u(x, y) = 1/4(u(x + h, y) + u(x - h, y) +  
u(x, y + h) + u(x, y - h) - h2 q(x, y)). (2)

We can thus solve Equation 1 by iterating Equa-
tion 2 until convergence. Here, q is the input, and 
the initial value of u is irrelevant because it will 
decorrelate during the convergence process.

We can now write a solver for this problem us-
ing pyOpenCL+ocl as shown in Figure 3.

This code differs from the previous code in 
many ways:

■■ First, u, w, and q are 2D arrays (w does not ap-
pear in the equations, but it will be used as 
temporary storage).

■■ Next, q is initialized by setting its value at +1 
or -1 at some random sites.

■■ The kernel solve runs on a 2D grid, and therefore 
each running instance is identified by two num-
bers, x and y, determined by the calls to get_glob-
al_id(0) and get_global_id(1), respectively.

■■ The kernel is compiled at runtime, therefore 
the value of n is passed to the kernel via string 
replacement. This is a trick, but it illustrates the 
possibility of dynamically generating OpenCL 
code at runtime.

■■ In the kernel, XY is a variable that stores the 1D 
index corresponding to the x, y coordinates. 

1 import numpy 
2 import pyopencl as pcl 
3
4 class Device(object): 
5  flags = pcl.mem_flags 
6  def __init__ (self): 
7  self.ctx = pcl.create_some_context() 
8  self.queue = pcl.CommandQueue(self.ctx) 
9  def buffer(self,source=None,size=0,mode=pcl.mem_flags.READ_WRITE):
10  if source is not None: mode = mode|pcl.mem_flags.COPY_HOST_PTR
11  buffer = pcl.Buffer(self.ctx,mode, size=size, hostbuf=source)
12  return buffer 
13  def retrieve(self,buffer,shape=None,dtype=numpy.float32): 
14  output = numpy.zeros(shape or buffer.size/4,dtype=dtype) 
15  pcl.enqueue_copy(self.queue, output, buffer) 
16  return output 
17  def compile(self,kernel): 
18  return pcl.Program(self.ctx,kernel).build() 

Figure 2. Part of the ocl library, the Device class creates an abstration layer on top of pyOpenCL.
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Notice that, from the device’s viewpoint, all 
buffers are 1D C-style arrays.

■■ Finally, the solve kernel is called within the loop 
in k. The [n,n] argument specifies that we want 
to run one kernel for each x,y, where x = 0...n - 1 
and y = 0...n - 1. Because the kernel uses u as in-
put and as output, to avoid concurrency issues, we 
store the output in a temporary array w and swap 
u with w after each iteration. For didactic purpos-
es, we don’t check convergence; we simply iterate 
Equation 2 a fixed number of times.

We use the Canvas library (https://github.com/
mdipierro/canvas), built on top of the matplotlib 

plotting library, to generate an 2D image of the 
output field u. Figure 4 shows the output of a ran-
dom input. In this implementation, we assume a 
choice of units such that h ≡ 1.

Laplace Solver with ocl
Mixing Python syntax with C syntax can make 
programs difficult to read and error prone (a syn-
tax error in the kernel might result in an obscure 
runtime error, for example). A possible solution to 
this problem consists of coding the kernels them-
selves in Python. There are two libraries for doing 
this: ocl and Clyther (https://github.com/srossross/
Clyther/) both are based on the Meta decompiler. 

Figure 3. Laplace solver with pyOpenCL using the Device class.

1 from ocl import Device 
2 from canvas import Canvas 
3 from random import randint, choice 
4 import numpy 
5
6 n = 300 
7 q = numpy.zeros((n,n), dtype=numpy.float32) 
8 u = numpy.zeros((n,n), dtype=numpy.float32) 
9 w = numpy.zeros((n,n), dtype=numpy.float32) 
10
11 for k in range(n): 
12  q[randint(1, n-1),randint(1, n-1)] = choice((-1,+1)) 
13
14 device = Device() 
15 q_buffer = device.buffer(source=q, mode=device.flags.READ_ONLY) 
16 u_buffer = device.buffer(source=u) 
17 w_buffer = device.buffer(source=w) 
18
19
20 kernels = device.compile(""" 
21  __kernel void solve(__global float *w, 

__global const float *u,22
__global const float *q) {32

24  int x = get_global_id(0); 
25  int y = get_global_id(1);  
26  int xy = y*WIDTH + x, up, down, left, right; 
27  if(y!=0 && y!=WIDTH-1 && x!=0 && x!=WIDTH-1) { 
28  up=xy+WIDTH; down=xy-WIDTH; left=xy-1; right=xy+1; 
29  w[xy] = 1.0/4.0*(u[up]+u[down]+u[left]+u[right] - q[xy]); 
30  } 
31  } 
32  """.replace('WIDTH',str(n))) 
33
34 for k in range(1000): 
35  kernels.solve(device.queue, [n,n], None, w_buffer, u_buffer, q_buffer)
36  (u_buffer, w_buffer) = (w_buffer, u_buffer) 
37
38 u = device.retrieve(u_buffer,shape=(n,n)) 
39
40 Canvas().imshow(u).save(filename='plot.png') 
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Here, we use ocl, which I specifically designed to 
work with pyOpenCL.

We rewrite the Laplace solver as Figure 5 
shows.

Most of the code is the same as in Figure 3, 
except for the solve kernel; here, the kernel is a 
Python function “decorated” with @device.com-
piler.define_kernel(...). This decorator per-
forms introspection of the function at runtime, 
converts the body of the function into an Abstract 
Syntax Tree (AST), serializes the AST into C99/
OpenCL code, and compiles it using pyOpenCL. 
This lets us write OpenCL code using Python 
syntax.

One complication is that C99/OpenCL is 
a statically typed language, while Python is only 
strongly typed. We thus need a way to declare 
the type for variables in Python. For the function 

arguments, we can do this in the decorator argu-
ments. For example:

w = "global:const:ptr_float"

is converted to

__global const float *w.

For local variables, we do this through the pseudo-
casting operators, such as new_int and new_float. 
For example:

xy = new_int(x*n+y)

is converted into

int xy = x*n+y;.

Variable types must be declared when first as-
signed. The converter checks that this is the case 
to prevent further and more obscure compile time 
errors. The return type is determined automati-
cally, but you must return a variable (or None), not 
an expression. Table 1 shows how other types are 
converted.

The goal of ocl isn’t to translate arbitrary Py-
thon code into C99/OpenCL, but rather to allow 
the use of Python syntax to write OpenCL. This 
means that only C99/OpenCL variable types are 
allowed; Python types, such as lists and diction-
aries, aren’t. Moreover, all functions called in the 
Python code that constitutes the body of the solve 
function are intended to be OpenCL functions, 
not Python functions.

With ocl, you can define multiple kernels within 
the same program and call them when needed. You 
can also use the @device.compiler.define(...) 
decorator to define other functions to be executed on 
the device. They will be visible and callable by the ker-
nels, but they won’t be callable from the host program.

We can pass constants from the Python con-
text to the OpenCL context as follows: device.
compile(..., constants = dict(n = n)). Ad-
ditional C files can be included using the syntax, 
device.compile(..., includes = ['#include 

<math.h>']), where includes is a list of #include 
statements.

The ocl library also contains a decorator to con-
vert a Python function into C99 and compile it 
at runtime without using pyOpenCL, as well as a 
decorator to convert a Python function into a Java-
Script function (which is beyond this article’s scope).
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Figure 4. The output of the Laplace program. This 
output represents the 2D electrostatic potential for a 
random charge distribution.

Table 1. Converting ocl to C99/OpenCL.

Ocl C99/OpenCL

a = new_type(...) type a = ...;

a = new_prt_type(...) type *a = ...; 

a = new_prt_prt_type(...) type **a = ...;

None Null

ADDR(x) &x

REFD(x) *x

CAST(prt_type,x) (type*)x
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Often, the addition of a new layer adds com-
plexity and makes debugging more difficult. That 
isn’t the case here. Although I use Python syntax to 
generate OpenCL code, the generated code is state-
ment-by-statement equivalent to Python’s source 
code, including variable names. The conversion 
layer helps debugging, because it prevents typical 
typographical errors, such as unbalanced brackets, 
missing semicolons, and the use of undefined sym-
bols. If the Python code is syntactically valid (and 
that’s easier to check than the OpenCL code), then 
the generated OpenCL is also syntactically valid. 
Logic errors are still possible, as are misspellings 

of external function names. The generated code is 
saved and it can be debugged as native OpenCL. 
Mapping the generated code back into the source 
Python code is trivial.

OpenCL is the only framework for writing por-
table applications that work on CPU, GPUs, 

and mobile devices. Yet programming into na-
tive OpenCL code embedded into C/C++ code is 
very complex and is a major barrier to entry for 
scientists. Further, while Python—thanks to the 
numPy libraries—has established itself as a new 

5
6 n = 300 
7 q = numpy.zeros((n,n), dtype=numpy.float32) 
8 u = numpy.zeros((n,n), dtype=numpy.float32) 
9 w = numpy.zeros((n,n), dtype=numpy.float32) 
10
11 for k in range(n): 
12  q[randint(1, n-1),randint(1, n-1)] = choice((-1,+1)) 
13
14 device = Device() 
15 q_buffer = device.buffer(source=q, mode=device.flags.READ_ONLY) 
16 u_buffer = device.buffer(source=u) 
17 w_buffer = device.buffer(source=w) 
18
19 @device.compiler.define_kernel( 
20  w='global:ptr_float', 
21  u='global:const:ptr_float', 
22  q='global:const:ptr_float') 
23 def solve(w,u,q): 
24  x = new_int(get_global_id(0)) 
25  y = new_int(get_global_id(1)) 
26  xy = new_int(x*n+y) 
27  if y!=0 and y!=n-1 and x!=0 and x!=n-1: 
28  up = new_int(xy-n) 
29  down = new_int(xy+n) 
30  left = new_int(xy-1) 
31  right = new_int(xy+1) 
32  w[xy] = 1.0/4*(u[up]+u[down]+u[left]+u[right] - q[xy]) 
33
34 kernels = device.compile(constants=dict(n=n)) 
35
36 for k in range(1000): 
37  kernels.solve(device.queue, [n,n], None, w_buffer, u_buffer, q_buffer)
38  (u_buffer, w_buffer) = (w_buffer, u_buffer) 
39
40 u = device.retrieve(u_buffer,shape=(n,n)) 
41
42 Canvas().imshow(u).save(filename='plot.png') 

1 from ocl import Device 
2 from canvas import Canvas 
3 from random import randint, choice 
4 import numpy 

Figure 5. Laplace solver with ocl.
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standard for scientific computing, it can’t take 
advantage of modern hardware because the inter-
preter serializes all running code (including mul-
tithreaded code). Fortunately, pyOpenCL solves 
this by letting scientists combine the best of both 
worlds: using Python for the overall workflow, in-
put/output, and plotting; and using OpenCL for 
the code’s computing-intensive parts. Here, I took 
this a step further with ocl, which converts Python 
code into OpenCL code at runtime. 
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