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Concurrency in Modern 
Programming Languages

I n the last 10 years, CPU clock speeds 
haven’t increased significantly, but the com-
puting power of CPUs has continued to 
grow according to Moore’s law. Research-

ers achieved this by increasing the number of 

computing cores per chip. This process has made 
parallel computing relevant to a much broader 
community.

Writing computer programs that take advan-
tage of multicores is a challenge because of the 
diversity of architectures and because of the in-
herent difficulty of writing parallel programs. 
In today’s multicore world, the means to express 
parallelism and the effectiveness in achieving 
parallel performance are increasingly important.

Traditionally, there have been two approaches 
to parallel programming: threads that com-
municate via shared memory and processes that  
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communicate via message passing. Modern pro-
gramming languages introduce different ap-
proaches, some of which are discussed in this 
special issue of CiSE.

About the Articles
In “Clojure for Number Crunching on Multi-
core Machines,” Martin Kalin and David Miller 
describe the Clojure language, which was first 
released to the public by Rich Hickey in 2007. 
Clojure—like Lisp, Erlang, and Haskell—is a 
functional language. In functional languages, the 
output of any function depends only on the input, 
and there’s no global state. This approach alone 
should make functional languages appealing to 
scientists. The input and output consist of immu-
table data structures that can safely be accessed 
concurrently without the need for locking.

If a problem is decomposable, the functions that 
constitute the intermediate steps to the solution can 
be executed in parallel, and the underlying virtual 
machine (VM) can automatically allocate them 
to different cores. Yet not everything is always so 
simple and some objects must be mutable. Different 
languages deal with mutability in different ways.

Clojure uses transactional memory. With some 
limitations, if two functions reference the same 
mutable object and try to modify it in parallel 
(think about incrementing a counter), the conflict 
is detected, and effectively the access to the ob-
ject is serialized without need for explicit locking. 
Clojure runs on the Java VM and can access all of 
the Java APIs.

Steve Vinoski’s article “Concurrency and 
Message Passing in Erlang” describes Erlang 
and the Open Telecom Platform (OTP) re-
leased by Erlang in 1996. Erlang is a functional 
language originally developed with the goal of 
making software development more reliable, 
easier, and less expensive.

In Erlang, applications consist of many light-
weight processes that are managed by a scheduler 
in the VM and dispatched to the available cores  
automatically. These lightweight processes have  
no overhead, and one VM can run millions of them. 
They can only communicate via message passing, 
thus avoiding the need for explicit locking.

Duncan Coutts and Andres Löh’s article  
“Deterministic Parallel Programming with Haskell” 
describes the Haskell language. Haskell is a 
modern functional programming language that, 
instead of using concurrent threads, provides 
a library (Repa) to allow writing concise high-
level parallel programs that are guaranteed to be 
deterministic.

Haskell doesn’t use a VM, but it compiles to 
native code. Like Erlang, it supports lightweight 
threads, but it doesn’t use explicit message pass-
ing. Instead, it determines data dependencies from 
the data structures. For example, a Haskell library 
called Repa defines the notion of a parallel array. 
Parallel array operations are automatically parallel-
ized into as many chunks as there are CPU cores.

Coutts and Löh also mention ongoing de-
velopment efforts to let Haskell support grids, 
GPUs, and CPU single-instruction, multiple-data 
(SIMD) instructions. The goal is to allow differ-
ent parallel programming models within a single 
programming language.

A Parallel Assignment
To better compare Clojure, Erlang, and Haskell, 
we assigned the authors the same problem: paral-
lelize a naive solver for a 1D Poisson equation:

∇2f(x) = ρ(x).

Once discretized (x → xi = x0 + hi, f(x) → fi,  
ρ(x) → ρi) this equation turns into an iterative 
expression:
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where ρ and f can be thought of as input and out-
put, respectively. Here, h is the discretization step. 
The expression must be iterated until convergence 
of the array f. Each iteration can be parallelized 
in the integer variable i.

There are three issues of importance here: 
ease of implementation of the parallel approach; 
parallel scaling with the number of cores; and 
overall language speed. We leave the discussion 
of the first two issues to the authors.

A truly unbiased speed comparison is impos-
sible, and real-life performance is problem-specific.  
Still yet, we refer the reader to The Computer  
Language Benchmarks Game (http://shootout.
alioth.debian.org), from which we report bench-
marks (see Table 1).

The first column of Table 1 shows the average 
running time of a battery of benchmarks on a sin-
gle core of a Q6600 Intel CPU normalized to C++ 
running time. This measures the language speed but 
not its scaling. The second column shows the results 
of a specific benchmark, called thread-ring, on four 
cores. Thread-ring creates 503 threads and passes a 
token around them in a ring, while performing no 
computation. This measures the language overhead 
in dealing with concurrency. In both cases, smaller 
numbers indicate better performance.
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T hese languages aren’t for everyone, 
and we don’t expect the readers to 
immediately switch to using them. 
Yet their expressiveness and their 

ability to handle concurrency in a simpler way 
will be appealing to some. Moreover, they might 
provide an indication as to the future of program-
ming languages.

In fact, some of the ideas presented in these ar-
ticles aren’t unique to functional languages. An 
example is the Go language (http://golang.org) 
proposed by Google as a possible C replacement. 
As with Erlang and Haskell, Go implements 
lightweight “goroutines” that communicate via 
buffered channels, thus providing a low-level and 
efficient message passing interface to concur-
rent tasks. Another example is the D language 
(http://dlang.org), which is a systems program-
ming language similar to C++. D’s approach to 

concurrency is also to use isolated threads or pro-
cesses that communicate via messages, although it 
also supports old-style synchronization of critical 
sections using explicit mutex locks.

The proliferation of new languages and para-
digms can at fi rst appear confusing, but it shows 
a clear trend toward increasing the expressiveness 
and readability of languages while decoupling the 
coding of the algorithm from parallelization and 
concurrency optimizations.
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Table 1. Computer language benchmarks.

Language
One core 
(average)

Four cores 
(thread-ring)

C++ (GNU C++) 1.00 1.00

Java 1.49 1.86

Haskell (Glasgow Haskell Compiler) 1.58 0.05

Clojure 3.31 0.51

Erlang (High-Performance Erlang) 7.83 0.19
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