
G u e s t E d i t o r s ’
I n t r o d u c t i o n

8 Computing in SCienCe & engineering

Concurrency in Modern
Programming Languages

I n the last 10 years, CPU clock speeds
haven’t increased significantly, but the com-
puting power of CPUs has continued to
grow according to Moore’s law. Research-

ers achieved this by increasing the number of

computing cores per chip. This process has made
parallel computing relevant to a much broader
community.

Writing computer programs that take advan-
tage of multicores is a challenge because of the
diversity of architectures and because of the in-
herent difficulty of writing parallel programs.
In today’s multicore world, the means to express
parallelism and the effectiveness in achieving
parallel performance are increasingly important.

Traditionally, there have been two approaches
to parallel programming: threads that com-
municate via shared memory and processes that

1521-9615/12/$31.00 © 2012 ieee

CopubliShed by the ieee CS and the aip

Massimo Di Pierro
DePaul University
David Skinner
Lawrence Berkeley Laboratory

CISE-14-6-Gei.indd 8 10/5/12 2:06 PM

november/deCember 2012 9

communicate via message passing. Modern pro-
gramming languages introduce different ap-
proaches, some of which are discussed in this
special issue of CiSE.

About the Articles
In “Clojure for Number Crunching on Multi-
core Machines,” Martin Kalin and David Miller
describe the Clojure language, which was first
released to the public by Rich Hickey in 2007.
Clojure—like Lisp, Erlang, and Haskell—is a
functional language. In functional languages, the
output of any function depends only on the input,
and there’s no global state. This approach alone
should make functional languages appealing to
scientists. The input and output consist of immu-
table data structures that can safely be accessed
concurrently without the need for locking.

If a problem is decomposable, the functions that
constitute the intermediate steps to the solution can
be executed in parallel, and the underlying virtual
machine (VM) can automatically allocate them
to different cores. Yet not everything is always so
simple and some objects must be mutable. Different
languages deal with mutability in different ways.

Clojure uses transactional memory. With some
limitations, if two functions reference the same
mutable object and try to modify it in parallel
(think about incrementing a counter), the conflict
is detected, and effectively the access to the ob-
ject is serialized without need for explicit locking.
Clojure runs on the Java VM and can access all of
the Java APIs.

Steve Vinoski’s article “Concurrency and
Message Passing in Erlang” describes Erlang
and the Open Telecom Platform (OTP) re-
leased by Erlang in 1996. Erlang is a functional
language originally developed with the goal of
making software development more reliable,
easier, and less expensive.

In Erlang, applications consist of many light-
weight processes that are managed by a scheduler
in the VM and dispatched to the available cores
automatically. These lightweight processes have
no overhead, and one VM can run millions of them.
They can only communicate via message passing,
thus avoiding the need for explicit locking.

Duncan Coutts and Andres Löh’s article
“Deterministic Parallel Programming with Haskell”
describes the Haskell language. Haskell is a
modern functional programming language that,
instead of using concurrent threads, provides
a library (Repa) to allow writing concise high-
level parallel programs that are guaranteed to be
deterministic.

Haskell doesn’t use a VM, but it compiles to
native code. Like Erlang, it supports lightweight
threads, but it doesn’t use explicit message pass-
ing. Instead, it determines data dependencies from
the data structures. For example, a Haskell library
called Repa defines the notion of a parallel array.
Parallel array operations are automatically parallel-
ized into as many chunks as there are CPU cores.

Coutts and Löh also mention ongoing de-
velopment efforts to let Haskell support grids,
GPUs, and CPU single-instruction, multiple-data
(SIMD) instructions. The goal is to allow differ-
ent parallel programming models within a single
programming language.

A Parallel Assignment
To better compare Clojure, Erlang, and Haskell,
we assigned the authors the same problem: paral-
lelize a naive solver for a 1D Poisson equation:

∇2f(x) = ρ(x).

Once discretized (x → xi = x0 + hi, f(x) → fi,
ρ(x) → ρi) this equation turns into an iterative
expression:

φ
φ φ

ρ∀ ←
+

−− +i
h

2 2

,i
i i

i
1 1

2

where ρ and f can be thought of as input and out-
put, respectively. Here, h is the discretization step.
The expression must be iterated until convergence
of the array f. Each iteration can be parallelized
in the integer variable i.

There are three issues of importance here:
ease of implementation of the parallel approach;
parallel scaling with the number of cores; and
overall language speed. We leave the discussion
of the first two issues to the authors.

A truly unbiased speed comparison is impos-
sible, and real-life performance is problem-specific.
Still yet, we refer the reader to The Computer
Language Benchmarks Game (http://shootout.
alioth.debian.org), from which we report bench-
marks (see Table 1).

The first column of Table 1 shows the average
running time of a battery of benchmarks on a sin-
gle core of a Q6600 Intel CPU normalized to C++
running time. This measures the language speed but
not its scaling. The second column shows the results
of a specific benchmark, called thread-ring, on four
cores. Thread-ring creates 503 threads and passes a
token around them in a ring, while performing no
computation. This measures the language overhead
in dealing with concurrency. In both cases, smaller
numbers indicate better performance.

CISE-14-6-Gei.indd 9 10/5/12 2:06 PM

10 Computing in SCienCe & engineering

T hese languages aren’t for everyone,
and we don’t expect the readers to
immediately switch to using them.
Yet their expressiveness and their

ability to handle concurrency in a simpler way
will be appealing to some. Moreover, they might
provide an indication as to the future of program-
ming languages.

In fact, some of the ideas presented in these ar-
ticles aren’t unique to functional languages. An
example is the Go language (http://golang.org)
proposed by Google as a possible C replacement.
As with Erlang and Haskell, Go implements
lightweight “goroutines” that communicate via
buffered channels, thus providing a low-level and
efficient message passing interface to concur-
rent tasks. Another example is the D language
(http://dlang.org), which is a systems program-
ming language similar to C++. D’s approach to

concurrency is also to use isolated threads or pro-
cesses that communicate via messages, although it
also supports old-style synchronization of critical
sections using explicit mutex locks.

The proliferation of new languages and para-
digms can at fi rst appear confusing, but it shows
a clear trend toward increasing the expressiveness
and readability of languages while decoupling the
coding of the algorithm from parallelization and
concurrency optimizations.

Massimo Di Pierro is an associate professor at the
School of Computing of Digital Media at DePaul
University. His main research interests are in lat-
tice quantum chromodynamics, quantitative risk
management, and Web development. Massimo has
a PhD in physics from the University of Southamp-
ton, United Kingdom. Contact him at mdipierro@
cs.depaul.edu.

David Skinner currently leads the Scienti� c Discovery
through Advanced Computing (SciDAC) Outreach
Center at Lawrence Berkeley Laboratory, which pro-
vides information and services that support SciDAC’s
outreach, training, and research objectives. His re-
search focuses on the performance analysis of comput-
ing architectures and HPC applications. Skinner has a
PhD in theoretical chemistry from the University of Cali-
fornia, Berkeley. Contact him at deskinner@lbl.gov.

Table 1. Computer language benchmarks.

Language
One core
(average)

Four cores
(thread-ring)

C++ (GNU C++) 1.00 1.00

Java 1.49 1.86

Haskell (Glasgow Haskell Compiler) 1.58 0.05

Clojure 3.31 0.51

Erlang (High-Performance Erlang) 7.83 0.19

The American Institute of Physics (AIP) is a not-for-pro t membership corporation chartered
in New York State in 1931 for the purpose of promoting the advancement and diffusion of the
knowledge of physics and its application to human welfare. Leading societies in the elds of
physics, astronomy, and related sciences are its members.

In order to achieve its purpose, AIP serves physics and related elds of science and technology
by serving its member societies, individual scientists, educators, students, R&D leaders, and the
general public with programs, services, and publications—information that matters.

The Institute publishes its own scienti c journals as well as those of its member societies;
provides abstracting and indexing services; provides online database services; disseminates
reliable information on physics to the public; collects and analyzes statistics on the profession and
on physics education; encourages and assists in the documentation and study of the history and
philosophy of physics; cooperates with other organizations on educational projects at all levels;
and collects and analyzes information on federal programs and budgets.

The scientists represented by the Institute through its member societies number more than 134
000. In addition, approximately 6000 students in more than 700 colleges and universities are
members of the Institute’s Society of Physics Students, which includes the honor society Sigma Pi
Sigma. Industry is represented through the membership of 37 Corporate Associates.

Governing Board: Louis J. Lanzerotti* (chair), Richard Baccante, Barry Barish, Malcolm R. Beasley,
G. Fritz Benedict, J. Daniel Bourland,* Terri Braun, Robert Byer, Timothy A. Cohn, Beth Cunningham,*
Bruce H. Curran,* Robert Doering, Michael D. Duncan,* H. Frederick Dylla*(ex of�cio), David Ernst,
Janet Fender, Judith Flippen-Anderson,* Brian J. Fraser,* Jaime Fucugauchi, A. Jeffrey Giacomin,*
Mark Hamilton, John Haynes, Paul L. Kelley, Angela R. Keyser, James T. Kirby Jr, Kate Kirby, Rudolf
Ludeke,* Jim Marshall, Kevin B. Marvel,* Christine McEntee, Catherine O’Riordan, Elizabeth A. Rogan,
Charles E. Schmid,* Joseph Serene,* Benjamin B. Snavely* (ex of�cio), David Sokoloff,
Scott Sommerfeldt, Gene Sprouse, Gay Stewart, Hervey (Peter) Stockman, Michael Turner.

 *Executive Committee member.

Management Committee: H. Frederick Dylla, Executive Director and CEO; Richard Baccante,
Treasurer and CFO; Theresa C. Braun, Vice President, Human Resources; John S. Haynes, Vice
President, Publishing; Catherine O’Riordan, Vice President, Physics Resources; Benjamin B.
Snavely, Secretary.

w
w

w
.a

ip
.o

rg

CISE-14-6-Gei.indd 10 10/5/12 2:06 PM

