
64	 This article has been peer-reviewed.� Computing in Science & Engineering

P e t a s c a l e
C o m p u t i n g
W e b - B a s e d

A p p l i c a t i o n s

web2py for Scientific Applications
The needs of scientists to communicate effectively, collaborate over the Internet, and
organize and present data in a structured and accessible manner have become critically
important. The web2py framework offers rapid development and prototyping of secure
database-driven Web applications and was created specifically with the scientific and
academic communities in mind.

Discussions about scientific applica-
tions often refer to large-scale nu-
merical computations. In recent times,
things have changed, and the scien-

tific community’s needs have broadened. In many
sectors, scientists’ need to communicate effec-
tively, increase access, and organize and present
data are more important than their need to write
fast code.

For example, using Secure Copy (SCP) and Re-
mote Sync (RSync) protocols to transfer data from
one place to another was a good solution when a
handful of scientists were working on it, but it’s no
longer effective when hundreds are collaborating.
Data must be tagged, access tracked, and errors
logged. Applications that access the data must be
given a face in the form of an accessible Web-
based user interface or a Web service interface.
Through the Web interface, users can more easily
and efficiently interact with the data. Grid tools
provide a solution to some of these problems, but
such tools have a steep learning curve. Moreover,
there’s not one solution that fits all problems.

Web frameworks are a relatively new class of
tools that have come to the rescue of scientists.
These frameworks are libraries that allow rapid
development of Web-based applications. Most
of the frameworks provide APIs to handle con-
currency and scalability (to serve multiple users

simultaneously), security (authentication, autho-
rization, cross-site scripting, and injection pre-
vention), storage (cookies, sessions, and database
access via a database abstraction layer), and inter-
face with third-party programs via standard com-
munication protocols.

A Web framework can turn a scientific software
library into a complex interactive application.
Web frameworks already find wide applications
in science. They’ve been used to build Web in-
terfaces for data acquisition systems, computing
clusters, and computer algebra systems. Different
communities have developed Web frameworks in
almost every programming language. Common
open source ones include Struts for Java, Symphony
for PHP, Ruby on Rails for Ruby, and Django for
Python.

Here, I describe web2py (http://web2py.com),1 a
new Web framework created in Python and pro-
grammable in Python. The only framework born
in an academic environment, web2py is used, for
example, in projects supported by the US Depart-
ment of Energy,2 and it counts more than 1,700
registered users. Here, I’ll use web2py to show
how we can build a Web application that stores
a database of DNA strings and looks for similari-
ties using Needleman-Wunsh plots.3 This article
is based on a tutorial I gave at Supercomputing
2009 in Portland; the code presented is a complete
web2py application.

Framework Overview
Three things distinguish web2py from many ex-
isting frameworks. First, its main objective is not
simply to provide a utility for Web development,

1521-9615/11/$26.00 © 2011 IEEE

Copublished by the IEEE CS and the AIP

Massimo Di Pierro
DePaul University

CISE-13-2-DiPierro.indd 64 09/02/11 3:09 PM

March/April 2011 � 65

but to make Web development as easy as possible.
To do this, web2py forces developers to follow
good practice (such as form self-submission), re-
lieves developers from security-related decisions,
and provides everything in one package, includ-
ing a Web-based integrated development envi-
ronment (IDE).

Second, web2py is the only framework to pro-
vide a database abstraction layer that works on
both relational databases and Google App Engine
(support for other nonrelational databases is in
the works). Third, web2py is written in Python,
which lets users leverage power scientific libraries,
including NumPy, SciPy, matplotlib, PyTable/
HDF5, and others.

Because web2py is a model-view-controller
framework, applications built with the framework
are divided into files organized by role. The three
most important roles are

•	 models, which describe how data should be rep-
resented in the system;

•	 views, which describe how data should be pre-
sented to users; and

•	 controllers, which describe the application work-
flow and run the core algorithms.

web2py also handles other types of files:

•	 regular Python extension modules;
•	 static files, including images and other files that

don’t change;
•	 sessions, which store each system user’s current

state;
•	 cache;
•	 databases, for long-term memory;
•	 uploads (that is, static files uploaded by visitors);
•	 crontab files, which describe tasks that must be

executed on a fixed schedule; and
•	 languages, which contain the application trans-

lation to support internationalization.

Files are grouped under subfolders of the ap-
plication folder. The web2py framework enforces
this structure and other good software engineer-
ing practices. It also provides a Web-based IDE
and Web-based testing and debugging tools.

Example Application
As an example, let’s say we need a Web applica-
tion that lets users post and retrieve DNA strings,
compare them using the Needleman-Wunsh
algorithm,3 and plot the result. Users must be au-
thenticated to use the system. For plotting, we’ll
use the matplotlib library.

To create our dna application, we first eas-
ily create a new empty application via the Web-
based IDE. This application comes prepopulated
with scaffolding files that can be edited. (I’ll make it
clear when we’re editing a scaffolding file or cre-
ating a new file.) Once web2py is installed and
running, we can access the Web-based IDE at
URL http://127.0.0.1:8000/admin. Figure 1 shows
a screenshot.

The Model
We start by creating a new model file models/
db_dna.py (see Figure 2).

The function define_table dynamically gen-
erates and executes the SQL code—for any of
the supported back-ends, including SQLite, Post-
greSQL, MySQL, MSSQL, FireBird, Oracle,
Informix, DB2, SyBase, and the Google App
Engine—to create the dna table (or alter the table if
it has different field content). The dna table has two
fields, name and sequence, that have requirements
that the framework will enforce at the form level:

•	 name must be non-empty and not already in
database, and

Figure 1. First steps in creating the example dna
application. The process starts by creating an
empty Web-based integrated development
environment application that’s prepopulated with
scaffolding files that are editable.

Figure 2. A new model file models/db_dna.py. The define_table
dynamically generates and executes the SQL code to create the dna table.

db.define_table('dna',
 Field('name',unique=True,notnull=True)
 Field('sequence', 'text',
 requires=IS_MATCH('[ATGC]*')))

CISE-13-2-DiPierro.indd 65 09/02/11 3:09 PM

66� Computing in Science & Engineering

•	sequence must contain only the ATGC
symbols.

When users simply type this text in the model
file, web2py triggers, creates the table, and
generates a Web-based interface (appadmin)
to perform database inserts, updates, deletes,

and selects. Users can access appadmin at
http://127.0.0.1:8000/and/appadmin; Figure 2
shows a screenshot (I assume web2py is running
on 127.0.0.1:8000).

Next, we need to generate dummy data to
populate the database. We’ll assume each DNA
sequence is comprised of 50 genes, each picked
at random from 10 possible variations. Each
gene consists of 20 random bases (ATGC). We
then name each sequence with a random uni-
versal unique identifier (uuid). Figure 3 shows
the code to append to the models/db_dna.py
file.

The if statement checks whether the table
contains any record; if not, the code inserts 100
new random DNA sequences in the table. Ideally,
real data should be used to populate the database.
Users can browse generated sequences through
the appadmin interface (see Figure 4).

The Algorithm
Figure 5 shows the core of our application: the
Needleman-Wunsh algorithm.

The Needleman-Wunsh algorithm is imple-
mented in the model/db_dna.py file. The
algorithm takes two strings, a and b (which in our
case are two DNA sequences), and returns a table z,

Figure 3. The code to append to the models/db_dna.py file. The if statement checks whether the table
contains any record; if not, the code inserts 100 new random DNA sequences in the table.

if not db(db.dna.id>0).count():
 import random, uuid
 genes = []
 for k in range(10):
 bases = ['ATGC'[random.randint(0,3)] for i in range(20)]
 genes.append(''.join(bases))
 for k in range(100):
 sequence = ''.join([genes[random.randint(0,9)] for i in range(50)])
 db.dna.insert(name=uuid.uuid4(), sequence=sequence)

Figure 4. The appadmin interface. This interface
lets users browse through the generated
sequences.

Figure 5. The Needleman-Wunsh algorithm. This algorithm forms the application’s core and is
implemented in the model/db_dna.py file.

def needleman_wunsch(a,b,p=0.97):
 z=[]
 for i,r in enumerate(a):
 z.append([])
 for j,c in enumerate(b):
 if r==c: z[-1].append(z[i-1][j-1]+1 if i*j>0 else 1)
 else: z[-1].append(p*max(z[i-1][j] if i>0 else 0,
 z[i][j-1] if j>0 else 0))
 return z

CISE-13-2-DiPierro.indd 66 09/02/11 3:09 PM

March/April 2011 � 67

where z[i][j] represent a similarity factor
between the substrings a[:i] and b[:j]. This
empirical algorithm works by defining the simi-
larity between a[:i] and b[:j] as the similarity
between a[:i-1] and b[:j-1] times p = 0.97,
if a[i] = = b[j] or, otherwise, as the maximum
of the similarities between a[:i],b[:j-1] and
a[:i-1],b[:j]. The application visualizes z so
users can locate similar genes in each couple of
DNA sequences (see Figure 6).

The Controller
The controller’s role is to implement the application
workflow, decide which functions and algorithms
to expose, and call these algorithms. In our case,
we edit the scaffolding controller controllers/
default.py and replace the index function with
the function shown in Figure 7.

This functions defines a form that contains
two fields (s1 and s2). Each of them is a refer-
ence to db.dna record. It must be represented
by its %(name)s as opposed to its id. The func-
tion, which returns a form, is called by visit-
ing http://127.0.0.1:8000/dna/default/index (see
Figure 6). When we pick two sequences and sub-
mit the form, the form is accepted (if form.
accepts(...)) and returns the variable image
set to the dynamically generated URL calling
another function (needleman_wunsch_plot)
that generates the Needleman-Wunsh plot (which
we’ve not yet implemented). The form variables
s1 and s2 are also passed to that function via
vars=form.vars.

The decorator (@auth.requires_login) guar-
antees that only users who have logged in can
visit the page. All other visitors must register and
go through a login page provided automatically
by the framework (web2py implements the role-
based access control mechanism with multiple
authentication modules).

The View
web2py provides a default presentation for the
controller functions’ output, but we can cus-
tomize it in multiple ways. The easiest way is to
provide a view for the index function by edit-
ing the file views/default/index.html (see
Figure 8).

In this view, everything in {{ ... }} is
pure Python code and everything outside is
HTML (because this is a .html view). Here,
we extended the default layout.html. This is
a generic HTML file that ships with the scaf-
folding application. Its role is to give all pages
a consistent look and feel, while also allowing
those pages to be customized. We embed-
ded the form in the page {{=form}} and also
embed the image pointing to the image’s URL
{{if image:}}...{{pass}}.

Figure 6. Visualizing z. Offering this visualization lets users locate
similar genes in DNA sequences.

Figure 7. The function that replaces the index function. This new function defines a form that contains the
two fields that reference the db.dna record.

@auth.requires_login()
def index():
 form = SQLFORM.factory(
 Field('s1',db.dna,requires=IS_IN_DB(db,'dna.id','%(name)s')),
 Field('s2',db.dna,requires=IS_IN_DB(db,'dna.id','%(name)s')))
 if form.accepts(request.vars):
 image = URL(r=request,f='needleman_wunsch_plot',vars=form.vars)
 else:
 image = None
 return dict(form=form, image=image)

CISE-13-2-DiPierro.indd 67 09/02/11 3:09 PM

68� Computing in Science & Engineering

Plotting
Finally, we implement the function needleman_
wunsch_plot in controllers/default.py.
This function has five primary tasks:

•	 retrieve the actual sequences from the database,
•	 call the Needleman-Wunsh algorithm,
•	 print the data as a plot on a canvas in memory,
•	 print the canvas in a memory-mapped PNG file

(cStringIO), and
•	 return the PNG content.

Figure 9 shows the complete implementation.
The matplotlib APIs are described in detail at

http://matplotlib.sourceforge.net. The yellow

and red patterns in Figure 6 let us easily find gene
pairs (identified by their x and y coordinates) that
contain similar DNA subsequences.

Web Services
At this point, our program is complete and fully
functional, so it’s time to add a Web service. Spe-
cifically, we want to expose the ability to retrieve
a DNA sequence from its uuid name via an XML
Remote Procedure Calling (RPC) service. We
can do this simply by placing the following code
in controllers/default.py:

@service.xmlrpc

def get_sequence(uuid):

 return db.dna(name=uuid).sequence

The decorator (@service.xmlrpc) exposes the
function (the function’s name, get_sequence,
is arbitrary). The service is available at http://
127.0.0.1:8000/dna/default /call/xmlrpc and
can be called from any programming language
supporting XML-RPC. Because all database
access is performed via the database abstrac-
tion layer’s API, there’s no need to write any
SQL.

Linked Data
Linked Data (LD; http://linkeddata.org) is a set of
best practices for exposing, sharing, and connect-
ing pieces of data, information, and knowledge
on the Semantic Web using Universal Resource
Identifiers and a Resource Description Frame-
work (RDF).

RDF is an XML-based document file format.
World Wide Web inventor Tim Berners-Lee pro-
posed the LD, which consists of tagging database
tables, fields, and relations using a Web Ontology
Language (OWL) and exposing the data together
with metadata that describe its meaning and rela-
tions. To support LD, web2py lets users tag data
with OWL and automatically create an RDF ser-
vice. More details are available at http://web2py.
com/semantic.

B y providing tools to help them expose
their data and algorithms to the Web
for both human and machine con-
sumption, Web frameworks can help

scientists increase transparency, awareness, and
efficiency in their work. The web2py framework,
which is released under the GPL2 license, was
developed specifically with the scientific and aca-
demic communities in mind.�

Figure 8. Customizing the controller functions’ output. The easiest
way to achieve this is to edit the file views/default/index.html
to provide a view for the index function.

{{extend 'layout.html'}}
{{=form}}
{{if image:}}
Sequence1: {{=db.dna[request.vars.s1].
 name}}

Sequence2: {{=db.dna[request.vars.s2].
 name}}

{{pass}}

Figure 9. The complete implementation. The needleman_wunsch_
plot is implemented in controllers/default.py and has several
tasks, including to retrieve actual sequences from the database and
call the Needleman-Wunsh algorithm.

@auth.requires_login()
def needleman_wunsch_plot():
 import cStringIO
 from matplotlib.backends.backend_agg import *
 from matplotlib.figure import *
 ### 1) fetch sequences
 dna1 = db.dna[request.vars.s1].sequence
 dna2 = db.dna[request.vars.s2].sequence
 ### 2) run algorithm
 z = needleman_wunsch(dna1,dna2)
 ### 3) make figure and plot on canvas
 fig = Figure()
 fig.add_subplot(111).imshow(z)
 ### 4) print canvas to memory mapped file
 stream = cStringIO.StringIO()
 FigureCanvasAgg(fig).print_png(stream)
 ### 5) return content of memory mapped file
 response.headers['Content-Type']='image/png'
 return stream.getvalue()

CISE-13-2-DiPierro.indd 68 09/02/11 3:09 PM

marCh/april 2011 69

acknowledgments
I thank David Angulo for reviewing this article and
for insightful conversations about the algorithm used
here.

References
1. M. Di Pierro, web2py Manual, 3rd ed., lulu.com,

2010.

2. M. Di Pierro, “mc4qcd,” Proc. Advanced Comput-

ing and Analysis Techniques, Proc. Science, 2010;

http://pos.sissa.it/archive/conferences/093/054/

ACAT2010_054.pdf.

3. S.B. Needleman and C.D Wunsch, “A General

Method Applicable to the Search for Similarities in

the Amino Acid Sequence of Two Proteins,” J. Molecu-

lar Biology, vol. 48, no. 3, 1970, pp. 443–53.

Massimo di pierro is an associate professor at the
School of Computing of DePaul University in Chicago.
His main expertise is in high-performance numerical
algorithms for scientifi c and fi nancial applications.
Di Pierro has a PhD in high energy physics from the
University of Southhampton, UK. Contact him at
mdipierro@cs.depaul.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

!""#$%&$'""($)($*+%,$%,"$-"*".%$#"/"0&(1"-%.$+-$2&1()%+-3$4-#567

8&&'+-3$%&$"-,4-2"$9&):$'-&*0"#3"$4-#$.'+00.7$

;4-%$%&$.,4("$%,"$<)%):"$&<$9&):$(:&<"..+&-7

5<$9&)$4-.*":"#$=9".>$%&$4-9$&<$%,"."$?)".%+&-.@$5AAA$B&1()%":$C&2+"%9$1"1D":.,+($+.$#"E-+%"09$<&:$9&)F$$

!"#$%&'(')#*%#$+#%"(,-./'0

"#$%&'() ('(* +&)(,(*(-.$ /*0 ,(%&+(/* 5AAA$B&1()%":$C&2+"%9$1(+,() .&0/2 /.

***G2&1()%":G&:3

342

/$ / 1(+,() &5!!&5!!&5 6777 8&+9:.() ;&%#(.2

<=>!?7@=AB

CD%%($$.& EFF &*G#*(,&&H$ 5)&+ .&9 9:,G#$4()$I $:%4 /$ =JK(#GG2 1(0#/L

C D%%($$.& MINFF .(%4*#%/G /*0 ,:$#*($$ %&:)$($L

C D%%($$.& %&*5()(*%($I 9:,G#%/.#&*$I /*0 %().#-%/.#&* %)(0(*.#/G$ /. (O%G:$#'(+(+,()P&*G2 $/'#*Q$L

IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

For submission information and author guidelines,
please visit www.computer.org/internet/author.htm

Engineering and Applying the Internet

CISE-13-2-DiPierro.indd 69 09/02/11 3:09 PM

