
Tuning Fermilab heavy quarks in 2þ 1 flavor lattice QCDwith application to hyperfine splittings

C. Bernard,1 C. DeTar,2 M. Di Pierro,3 A.X. El-Khadra,4 R. T. Evans,4,5 E. D. Freeland,1,* E. Gámiz,4,6 Steven Gottlieb,7,8

U.M. Heller,9 J. E. Hetrick,10 A. S. Kronfeld,6 J. Laiho,1,11 L. Levkova,2 P. B. Mackenzie,6 J. N. Simone,6 R. Sugar,12

D. Toussaint,13 and R. S. Van de Water14

(Fermilab Lattice and MILC Collaborations)

1Department of Physics, Washington University, St. Louis, Missouri 63130, USA
2Physics Department, University of Utah, Salt Lake City, Utah 84112, USA
3School of Computing, DePaul University, Chicago, Illinois 60604, USA
4Physics Department, University of Illinois, Urbana, Illinois 61801, USA

5Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
6Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

7Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
8National Center for Supercomputing Applications, University of Illinois, Urbana 61801, Illinois, USA

9American Physical Society, One Research Road, Ridge, New York 11961, USA
10Physics Department, University of the Pacific, Stockton, California 95211, USA

11Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland, UK
12Department of Physics, University of California, Santa Barbara, California 93106, USA

13Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
14Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 12 March 2010; published 23 February 2011)

We report the nonperturbative tuning of parameters—�c, �b, and �crit—that are related to the bare

heavy-quark mass in the Fermilab action. This requires the computation of the masses of Dð�Þ
s and Bð�Þ

s

mesons comprised of a Fermilab heavy quark and a staggered light quark. Additionally, we report the

hyperfine splittings for Dð�Þ
s and Bð�Þ

s mesons as a cross-check of our simulation and analysis methods. We

find a splitting of 145� 15 MeV for the Ds system and 40� 9 MeV for the Bs system. These are in good

agreement with the Particle Data Group average values of 143:9� 0:4 MeV and 46:1� 1:5 MeV,

respectively. The calculations are carried out with the MILC 2þ 1 flavor gauge configurations at three

lattice spacings a � 0:15, 0.12, and 0.09 fm.

DOI: 10.1103/PhysRevD.83.034503 PACS numbers: 12.38.Gc, 12.39.Hg, 14.40.Lb, 14.40.Nd

I. INTRODUCTION

Lattice QCD calculations play a critical role in the study
of standard model physics and the search for new physics.
For a set of lattice QCD calculations to be viable, several
basic tasks are necessary. The bare gauge coupling must be
eliminated in favor of an observable allowing the conver-
sion from lattice to physical units; the bare masses in the
lattice action must be tuned to correspond to physical
quarks; and experimentally established quantities must be
calculated in order to substantiate the method’s accuracy
and reliability. Once these tasks are complete, a variety of
quantities inaccessible to or not yet determined by experi-
ment may be calculated, such as decay constants, form
factors, and mass spectra.

The Fermilab Lattice and MILC Collaborations have
reported several calculations [1–8] based on ensembles of
lattice gauge fields with 2þ 1 flavors of sea quarks, gen-
erated by the MILC Collaboration [9,10]. Details of the
scale setting can be found in Refs. [11,12], and details of

the light-quark mass tuning in Ref. [11]. In this paper, we
report on the necessary tuning of the heavy-quark action
for charmed and bottom quarks. In particular, we describe
calculations of the heavy-light pseudoscalar and vector
meson masses using, for light quarks, the asqtad staggered
action [13] and, for heavy quarks, the Fermilab interpreta-
tion [14] of the Sheikholeslami-Wohlert (‘‘clover’’) action
[15] for Wilson fermions [16]. We use the spin average of
these meson masses to nonperturbatively tune the hopping
parameter �, which is equivalent to the bare heavy-quark
mass. We also describe the determination of �crit, the value
of � for which a degenerate Wilson pseudoscalar’s mass
vanishes. The value of �crit plays a minor role in the
calculation of heavy-light matrix elements [3–5], and a
more important role when determining a renormalized-
quark mass [6]. Finally, as a by-product of these calcula-
tions, we report the spin-dependent hyperfine splittings for
Bs and Ds mesons, which test how well we have improved
the chromomagnetic interaction.
Two aspects of the Fermilab method are important here.

First, the Fermilab interpretation makes no assumptions
about the size of the quark mass. Therefore, we are able to*eliz@fnal.gov
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treat both charm and bottom quarks within the same frame-
work. Second, since the Sheikoleslami-Wohlert action
maintains the spin and flavor symmetries of heavy quarks,
heavy-quark effective theory (HQET) can be used to inter-
pret and improve lattice discretization effects [17,18].
HQET techniques can be used to show how the improve-
ment works for observables, such as meson masses, in a
way simpler than, though equivalent to, the Symanzik
improvement program [19].

This paper is organized as follows. Section II reviews the
theoretical framework upon which these calculations are
based. Section III contains specific descriptions of
the gauge configurations, actions, and operators used
for the meson masses. Section IV covers the components
of the numerical analysis. Section V details the fitting
procedures. Section VI presents the results for the non-
perturbative tuning of the heavy-quark hopping parameters
�c and �b, the hyperfine splitting, and the critical hopping
parameter �crit. Section VII summarizes with a discussion
of improvements to these calculations that are currently
underway. Details of the meson-mass discretization error
estimation are given in Appendix A. Appendices B and C
tabulate intermediate numerical results. The partially
quenched chiral perturbation theory expression for the
hyperfine splitting is derived in Appendix D.

II. THEORETICAL BACKGROUND

The hopping-parameter form of the heavy-quark action
is [14]

S ¼ S0 þ SB þ SE; (2.1)

where

S0 ¼
X
n

�c nc n � �
X
n;�

½ �c nð1� ��ÞUn;�c nþ�̂

þ �c nþ�̂ð1þ ��ÞUy
n;�c n�; (2.2)

SB ¼ i

2
cB�

X
n;i;j;k

�ijk �c n�ijBn;kc n; (2.3)

SE ¼ icE�
X
n;i

�c n�0iEn;ic n; (2.4)

where ��� ¼ i
2 ½��; ���. The chromomagnetic and chro-

moelectric fields Bn;i and En;i are standard and given in

Ref. [14]. The term S0 includes dimension-five terms to
alleviate the fermion doubling problem [16]. The couplings
cE and cB of the dimension-five operators in SB and SE are
chosen to reduce discretization effects [14,15].

The hopping parameter � is related to the tadpole-
improved bare-quark mass by

am0 ¼ 1

u0

�
1

2�
� 1

2�crit

�
; (2.5)

where a is the lattice spacing, u0 is the tadpole-
improvement factor [20], and �crit is the value of � for
which the pseudoscalar meson mass (of two degenerate
Wilson quarks) vanishes. Our nonperturbative determina-
tion of �crit is discussed in Sec. VIC. To motivate our
method of tuning �, we first discuss the meson dispersion
relation. We then turn to the HQET description of our
Lagrangian to understand how to best use the dispersion
relation.
The meson dispersion relation can be written, for

jpj � m0, a
�1, as [14]

EðpÞ ¼ M1 þ p2

2M2

þOðp4Þ: (2.6)

Here, and throughout this work, we use lowercase m for
quark masses and uppercase M for meson masses. M1 and
M2 are known as the rest mass and kinetic mass, respec-
tively. Because the lattice breaks Lorentz invariance,
M1 � M2, although M1 ! M2 as a ! 0 for the action in
Eq. (2.1). By tuning �, one could adjust the bare, heavy-
quark mass such that either M1 or M2 is equal to the
physical meson mass. (To set M1 ¼ M2 requires the in-
troduction, and tuning, of an additional parameter in the
action. This is possible but, as discussed below, not neces-
sary [14].)
To clarify the role of the different masses in Eq. (2.6), it

is useful to introduce an effective Lagrangian. This also
sets up a language for discussing discretization errors later.
Because the action in Eq. (2.1) has the same heavy-quark
spin and flavor symmetries as continuum QCD, HQET is
an obvious candidate for its description [17,18]. To employ
HQET, one separates the short-distance physics at the scale
of the inverse heavy-quark mass 1=mQ from the long-

distance physics at the characteristic scale of QCD,
�QCD. The fact that we have a lattice does not change

the validity or utility of this separation. It simply means
that the lattice spacing a must be included in the descrip-
tion of the short-distance physics. Thus, the short-distance
coefficients of HQET applied to Eq. (2.1) differ from those
arrived at by applying HQET to continuum QCD; these
differences are the heavy-quark discretization errors.
Parameters in the lattice action can be chosen to minimize
them.
We introduce the heavy-quark effective Lagrangian for

our lattice gauge theory by writing [17,18]

LLGT ¼: Llight þLHQET; (2.7)

whereLlight is the Symanzik local effective Lagrangian for

the light degrees of freedom and ¼: means the Lagrangian
on the right-hand side describes the on-shell matrix ele-
ments of the Lagrangian on the left-hand side. The HQET
Lagrangian has a power-counting scheme, denoted by

LHQET ¼ X
s

LðsÞ
HQET; (2.8)
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where LðsÞ
HQET includes all operators of dimension 4þ s,

with coefficients of dimension �s consisting of powers of
the short distances, 1=mQ or a. The first few terms in

LHQET are [17]

L ð0Þ
HQET ¼ � �hðþÞðD4 þm1ÞhðþÞ; (2.9)

L ð1Þ
HQET ¼ �hðþÞ D

2

2m2

hðþÞ þ �hðþÞ i� � B
2mB

hðþÞ; (2.10)

L ð2Þ
HQET ¼ �hðþÞ i� � ðD�EÞ

8m2
E

hðþÞ þ �hðþÞ D �E
8m2

D

hðþÞ;

(2.11)

where hðþÞ is a two-component heavy-quark field, � are
the Pauli matrices, and B and E are the continuum gauge
fields. The massesm1,m2,mB,mE, andmD are functions of
the bare-quark mass m0 and the gauge coupling. For ex-
ample, the masses m1 and m2 are defined to all orders in
perturbation theory by Eq. (2.6), applied now to the pole
energy of a one-quark state [21]. The entries in Eqs. (2.9),
(2.10), and (2.11) are commonly referred to as follows.

Lð0Þ
HQET gives the rest mass. The first term of Lð1Þ

HQET is the

kinetic energy and the second is the chromomagnetic, or

hyperfine, interaction. The first term of Lð2Þ
HQET is the spin-

orbit interaction while the second is known as the Darwin
term.

For the pseudoscalar and vector meson rest masses, the
HQET formalism can be used to show that [17]

Mð�Þ
1 ¼m1þ ��lat��1;lat

2m2

�dJ
�2;lat

2mB

þOð1=m2Þ; (2.12)

where J is the total meson angular momentum with d0 ¼ 3
and d1 ¼ �1 for the pseudoscalar (M1) and vector (M�

1)

mesons, respectively. The quantities ��lat, �1;lat, and �2;lat

are HQETmatrix elements. At nonzero lattice spacing they
contain discretization effects from Llight, hence the sub-

script ‘‘lat.’’ The continuum limit of these quantities yields
their counterparts in HQET applied to continuum QCD
[17], which provides a basis for computing the

continuum-QCD quantities �� and �1 [22].
Mass splittings and matrix elements such as decay con-

stants and form factors are not affected by the value of m1

[17]. Thus, Eqs. (2.9) and (2.10) show that the kinetic mass
m2 is the first mass in the expansion that does play a role in
the dynamics. We therefore would like to associatem2, and
henceM2, with the physical mass, toleratingm1 � m2 (and
M1 � M2) for nonzero lattice spacings. The nonperturba-
tive tuning of � then entails adjusting � until the meson
kinetic mass—determined by fits of Monte Carlo lattice
data to the dispersion relation, Eq. (2.6)—equals that of the
physical meson mass. A relation similar to Eq. (2.12) holds
for M2

Mð�Þ
2 ¼ m2 þ ��lat þOð1=mÞ; (2.13)

with the leading discretization errors appearing in the 1=m
contribution. Final values for the nonperturbative tuning of
� are given in Sec. VIA.
To calculate the hyperfine splitting of the Ds or Bs

meson, consider

�1 	 M�
1 �M1: (2.14)

From Eq. (2.12),

M�
1 �M1 ¼ 4

�2;lat

2mB

þ � � � ; (2.15)

which differs from the continuum splitting only by discre-
tization errors in the light quarks and gluons appearing in
�2;lat, the mismatch of mB and its continuum counterpart

(or, equivalently, the choice of cB), and similar contribu-
tions from higher-dimension operators [17,23]. The split-
ting of kinetic masses,�2 	 M�

2 �M2, does not depend on
mB; rather, it depends on other generalized masses which
are not tuned in our simulations.1 Thus, �1 formally has
smaller discretization errors than�2.�1 is also statistically
cleaner than �2. In Eq. (2.15), 1=mB is sensitive to the
clover coupling cB in Eq. (2.3), so �1 tests how well it has
been chosen. The Bs and Ds hyperfine splittings are given
in Sec. VIB.

III. SIMULATIONS

In this section, we describe the gauge configurations
used and the details of the actions, operators, and correla-
tion functions that describe the heavy-light mesons. In
Sec. III A, we discuss the gauge configurations and the
parameters that describe each ensemble. We also review
how the lattice spacing is determined and the values of the
conversion factors r1 and r1=a. In Sec. III B, we discuss
parameter choices for the valence quarks and the smearing
of the heavy-quark wave function and how correlators are
built from heavy and light-quark fields.

A. Gauge configurations and related parameters

We use the MILC gauge configurations [9,10] that have
2þ 1 flavors of asqtad-improved staggered sea quarks [13]
and a Symanzik-improved gluon action [24,25].
Discretization errors from the sea quarks and gluons start
at Oð�sa

2; a4Þ. The four-fold degeneracy of staggered sea
quarks is removed by taking the fourth root of the deter-
minant. To support the legitimacy of this procedure,
Shamir has developed a renormalization-group framework
for lattice QCD with staggered fermions, which he uses to
argue that nonlocal effects of the rooted staggered theory
are absent in the continuum limit [26]. Additional support

1Tree-level expressions for these masses, and hence their
mismatch, can be found in Ref. [23].
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for this procedure comes from chiral perturbation theory
arguments [27,28]. Reviews of these papers and of other
evidence that this procedure reproduces the correct con-
tinuum limit appear in [11,29,30].

Table I lists the parameters of the gauge configurations
used in this work. All configurations have been gauge-fixed
to the Coulomb gauge. Ensembles of configurations are
grouped by their approximate lattice spacing and are referred
to as ‘‘fine’’ (a � 0:09 fm), ‘‘coarse’’ (a � 0:12 fm), and
‘‘medium-coarse’’ (a � 0:15 fm). The simulation bare
masses of the light and strange sea quarks are denoted by
am0

l and am
0
s, respectively, where am

0
l is the mass of the two

lighter sea quarks. The range of am0
l is light enough that the

physical up- and down-quark masses can be reached by a
chiral extrapolation, while am0

s is close to the physical
strange-quark mass. For convenience below, we write
ðam0

l; am
0
sÞ to identify ensembles, e.g., ‘‘the (0.0031, 0.031)

fine ensemble.’’ Also in Table I are the tadpole factors u0
[20,31], determined from the mean plaquette and used to
improve the gauge-configuration actions [9,10]. The value of
the physical strange-quark mass is denoted by the unprimed
ms [31].

To convert between lattice and physical units, the physi-
cal value of the lattice spacing must be determined. We
define the distance r1 [12] by

r21Fðr1Þ ¼ 1; (3.1)

where FðrÞ is the force between static quarks, calculated on
the lattice. For each ensemble, this yields a value of r1 in
lattice units, r1=a. The values are then ‘‘smoothed’’ by
fitting lnðr1=aÞ, from all ensembles, to a polynomial in 	
and 2am0

l þ am0
s [31]. The physical value of r1 is obtained

via the lattice calculation of an experimentally measurable

quantity. We consider two current determinations here.
One uses a lattice calculation of the �ð2SÞ-�ð1SÞ splitting
[33] to arrive at r1 ¼ 0:318ð7Þ fm [10,34]. A more recent
determination using r1f
 gives r1 ¼ 0:3108ð15Þðþ26

�79Þ fm
[35]. These two determinations are consistent within er-
rors. Because the determination of r1 from f
 uses finer
lattice spacings, we take that value,

r1 ¼ 0:3108

�þ30

�80

�
fm (3.2)

with no additional error. While this work was being com-
pleted, a new determination of r1 that uses two mass
splittings and one decay constant became available; r1 ¼
0:3133ðþ23

�3 Þ [36], which is consistent with the value used in
this work. Quantities can now be converted from lattice to
physical units by using r1 and the appropriate value of r1=a
[31] given in Table I.

B. Meson correlation functions

Table II lists the values of parameters used in the
valence-quark actions. For the light-valence quark, we
again use the asqtad action [13] and masses am0

q close to

the physical value of the strange-quark mass, cf. Table I.
From Eqs. (2.9), (2.10), and (2.11), one can see that withm2

tuned to the physical mass, the leading mismatch between
lattice and continuum physics is in the hyperfine term in

Lð1Þ
HQET. In principle, one can tune mB to its continuum

counterpart yielding a match between lattice and contin-
uum actions for both terms in Eq. (2.10). Here, we use the
tree-level expression for mB, which leaves the leading
mismatch at Oð�sa�Þ. By setting cE ¼ cB we obtain
the Sheikholeslami-Wohlert, OðaÞ improvement of the

TABLE I. Parameters describing the ensembles used. The dimensions of the lattice are given in terms of the spatial (NL) and
temporal (NT) size in lattice units. The gauge coupling is given by 	 ¼ 10=g2. The bare masses of the light and strange sea quarks are
given by am0

l and am
0
s, respectively. L ¼ aNL is the linear spatial dimension of the lattice in fm. The column labeled Ncf is the number

of configurations used in this work. The plaquette-determined tadpole-improvement factor is u0 [31]. The physical strange-quark mass
is ams [31] with errors, statistical and systematic, of less than 1%. The ratio r1=a is described in the text; errors are Hessian from the
smoothing fit. The final column lists the value of the inverse lattice spacing a�1 using r1 ¼ 0:3108ðþ30

�80Þ fm to convert from r1=a; errors
are from the error on r1 and r1=a.

N3
L � NT 	 am0

l am0
s L (fm) Ncf u0 ams r1=a a�1 GeV

Fine a � 0:09 fm 403 � 96 7.08 0.0031 0.031 3.5 435 0.8779 0.0252 3.692(6) 2:344þ60
�23

283 � 96 7.09 0.0062 0.031 2.4 557 0.8782 0.0252 3.701(5) 2:349þ61
�23

283 � 96 7.11 0.0124 0.031 2.4 518 0.8788 0.0252 3.721(5) 2:362þ61
�23

Coarsea � 0:12 fm 243 � 64 6.76 0.005 0.05 2.9 529 0.8678 0.0344 2.645(3) 1:679þ43
�16

203 � 64 6.76 0.007 0.05 2.4 836 0.8678 0.0344 2.635(3) 1:672þ43
�16

203 � 64 6.76 0.010 0.05 2.4 592 0.8677 0.0344 2.619(3) 1:663þ43
�16

203 � 64 6.79 0.020 0.05 2.4 460 0.8688 0.0344 2.651(3) 1:683þ43
�16

203 � 64 6.81 0.030 0.05 2.4 549 0.8696 0.0344 2.657(4) 1:687þ43
�16

Medium coarsea � 0:15 fm 163 � 48 6.572 0.0097 0.0484 2.4 631 0.8604 0.0426 2.140(4) 1:358þ35
�13

163 � 48 6.586 0.0194 0.0484 2.4 631 0.8609 0.0426 2.129(3) 1:352þ35
�13

163 � 48 6.600 0.0290 0.0484 2.4 440 0.8614 0.0426 2.126(3) 1:350þ35
�13
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discretization errors in the action [15]. From the HQET
perspective, this leaves mE � m2 in Eq. (2.11), but the
effects of this mistuning are at Oða2�2Þ and
Oð�sa�

2=mQÞ. Implementing the improvements above

and using tree-level tadpole improvement in the perturba-
tive expressions [20,24], we use cE ¼ cB ¼ u�3

0 .

The values of u0 used in the heavy-quark and light-
valence actions are given in Table II. For the fine and
medium-coarse ensembles, they are the plaquette values
used to generate the MILC gauge configurations. For the
coarse ensembles, the Landau-gauge link value was used.
The use of different u0 definitions results in a slight mis-
match between the light valence- and sea-quark actions. In
part because the meson mass is relatively insensitive to the
strange sea-quark mass, we do not expect any significant
systematic errors from this mismatch. Changes in u0 result
in changes to the bare mass of the heavy quark as well, but
this effect is partly absorbed by the nonperturbative tuning
of � and �crit. Table II also lists the nominal values of the
light valence-quark mass and sets of � values for bottom
and charm mesons. These sets of � values, and mesons
created from them, are referred to as charm-type or
bottom-type.

With the parameters of the actions set, we now turn to
the construction of the two-point correlators. Contributions
from excited states can be significantly reduced by using a
spatially smeared source, sink, or both, for the heavy-quark
propagator. For the correlators in this work, we use two
types of source-sink combinations for the heavy quarks.
One is simply a delta function for both the source and sink;
we refer to this as the local correlator. The other smears the
field c ðt; xÞ with a discretized version [37] of the 1S
charmonium wave function, SðyÞ, based on the
Richardson potential [38]:

�ðt; xÞ ¼ X
y

SðyÞc ðt; xþ yÞ; (3.3)

and the smearing wave function is applied after fixing to
the Coulomb gauge. Correlators using �ðt; xÞ are referred
to as smeared correlators. All light valence quarks have a
local source and sink. The meson correlator is

Ci;jðt;pÞ ¼
X
x

hOy
j ðt; xÞOið0; 0Þieip�x; (3.4)

where i, j denote the source, sink smearing of the heavy-
quark field; for this work i ¼ j. Oiðt; xÞ is a bilinear
interpolating operator with a gamma-matrix structure that
yields quantum numbers appropriate for either pseudosca-
lar or vector mesons. To construct this operator, we com-
bine a one-component, staggered light-quark spinor with a
four-component, Wilson-type heavy-quark spinor in a
manner similar to Ref. [39],

O�ðt; xÞ ¼ �c �ðt; xÞ��	�	�ðt; xÞ�ðt; xÞ; (3.5)

where � ¼ �5 or ��; �;	 are spin indices; and �ðxÞ 	
�x1
1 �

x2
2 �

x3
3 �

x4
4 . The fields

�c and � are the Wilson-type and

staggered fields, respectively, and the smeared correlator is
constructed in the same way, but with �� instead of �c . The
transformation properties of O�ðxÞ under shifts by one
lattice spacing are such that � can be viewed as playing
the role of the (fermionic) taste index [30,40]. In our
correlation functions, O�ðxÞ is summed over 24 hyper-
cubes, and so � can be interpreted as a taste degree of
freedom in the sense of Refs. [41,42].

TABLE II. Parameters used in the valence-quark actions. The bare masses of the light and strange sea quarks ðam0
l; am

0
sÞ label the

ensemble. The mass of the light (staggered) valence quark is given by am0
q. cE and cB are the coefficients of the chromoelectric and

chromomagnetic contributions to the Lagrangian. With cE ¼ cB, they are the usual Sheihkoleslami-Wohlert coupling. u0 is the
tadpole-improvement factor from measurements of the average plaquette for the fine and medium-coarse ensembles and from the
Landau-gauge link on the coarse ensembles. Hopping parameter values � used for bottomlike and charmlike heavy quarks are given in
the final two columns.

Lattice ðam0
l; am

0
sÞ am0

q cE ¼ cB u0 Bottom-type � Charm-type �

Fine (0.0031, 0.031) 0.0272, 0.031 1.478 0.8779 0.0923 0.127

(0.0062, 0.031) 0.0272, 0.031 1.476 0.8782 0.090, 0.0923, 0.093 0.1256, 0.127

(0.0124, 0.031) 0.0272, 0.031 1.473 0.8788 0.0923 0.127

Coarse (0.005, 0.050) 0.030, 0.0415 1.72 0.836 0.086 0.122

(0.007, 0.050) 0.030, 0.0415 1.72 0.836 0.074, 0.086, 0.093 0.119, 0.122, 0.124

(0.010, 0.050) 0.030, 0.0415 1.72 0.8346 0.074, 0.086, 0.093 0.119, 0.122, 0.124

(0.020, 0.050) 0.030, 0.0415 1.72 0.8369 0.074, 0.086, 0.093 0.122, 0.124

(0.030, 0.050) 0.030, 0.0415 1.72 0.8378 0.086 0.122

Medium-coarse (0.0097, 0.0484) 0.0387, 0.0484 1.570 0.8604 0.070, 0.080 0.115, 0.122a, 0.125

(0.0194, 0.0484) 0.0387, 0.0484 1.567 0.8609 0.070, 0.076, 0.080 0.115, 0.122, 0.125

(0.0290, 0.0484) 0.0484 1.565 0.8614 0.070, 0.080 0.115, 0.125

aUsed only with am0
q ¼ 0:484.
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IV. ANALYSIS OVERVIEW

In this section, we describe the components of our
analysis. Section IVA discusses the two-point correlator
fits used to determine the meson energies aEðpÞ.
Section IVB describes how we fit the meson dispersion
relation to obtain M2. Finally, Sec. IVC explains how � is
tuned and how the hyperfine splitting is determined.

A. Two-point correlator fits: EðpÞ
To determine EðpÞ, we simultaneously fit the local and

smeared heavy-light-meson two-point correlators to the
function

Ci;iðt;pÞ ¼
XN�1

¼0

�
Z2
i;ðe�EðpÞt þ e�EðpÞðNT�tÞÞ

þ ð�1Þtþ1ðZp
i;Þ2ðe�E

p
ðpÞt þ e�E

p
ðpÞðNT�tÞÞ

�
;

(4.1)

where NT is the temporal extent of the lattice, and terms

proportional to e�EðpÞðNT�tÞ are due to periodic boundary
conditions. To simplify notation in this subsection, the
lattice spacing a is not written out explicitly. Correlation
functions containing staggered light quarks have contribu-
tions from both desired- and opposite-parity states with the
opposite-parity states having the temporally oscillating
prefactor ð�1Þtþ1 [39]. We take each energy level  in
Eq. (4.1) to include a pair of states consisting of one
desired- and one opposite-parity state; the number of pairs
of states in a fit is given by N. Quantities associated with
the tower of opposite-parity states are denoted by the
superscript ‘‘p.’’

Equation (4.1) contains 2N exponentials, and the num-
ber of time slices in our data set is finite. Although it is
straightforward to separate the two different parities—
because of the ð�1Þtþ1—it is difficult to separate states
within each tower. Rather than relying solely on taking t
large enough, we use the technique of constrained curve
fitting [39,43,44]. We thus minimize an augmented �2

[43],

�2
aug 	 �2 þX

k

ðPk � ~PkÞ2
�2

~Pk

; (4.2)

which means each fit parameter Pk is provided a prior
Gaussian probability distribution function with central
value and width ð ~Pk;� ~Pk

Þ. The central value for fitted

quantities comes from minimizing �2
aug on the whole en-

semble. We take the parameters to be EðpÞ
0 , lnðZðpÞ

i;Þ, and (for
> 0) lnð�EðpÞ

 Þ, where �EðpÞ
 ¼ EðpÞ

 � EðpÞ
�1, thereby en-

forcing a tower of states with increasing energy.
In general, one considers a quantity to be determined by

the data only if the statistical error, discussed next, is
smaller than the corresponding prior width. In this work,

we are most concerned with the lowest-lying desired parity
state, and the data—not the priors—always determine E0

and Zi;0. For parameters that are poorly constrained by the

data, such as those describing excited states, these priors
prevent the fitter from searching fruitlessly along flat di-
rections in parameter space. Because of the freedom in
choosing the prior, we test whether the ground-state results
are prior independent, and stable. When testing the stabil-
ity of fit results, we use the Hessian error, defined as

�Pi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
@2�2

aug

@Pi@Pj

��1

ii

vuut ; (4.3)

because its straightforward definition allows it to be
quickly calculated for a single fit.
When using �2

aug to measure the goodness of fit, we

count the degrees of freedom as the number of data points;
the number of fit parameters is not subtracted since there
are an equal number of extra terms in �2

aug. In some cases,

this could result in misleadingly low values of �2
aug=dof.

For example, if the prior width � ~Pk
is much larger than

(Pk � ~Pk), the associated term in�2
aug will be much smaller

than the others. This could be adjusted a posteriori by
reducing the degrees of freedom, but it would require
devising a criterion for ‘‘large � ~Pk

.’’ We do not make

such adjustments in our analyses. Instead, to determine
goodness of fit, we monitor the values of �2

aug=dof from

constrained fits, but rely equally on the stability of fit
results.
We estimate statistical uncertainties by generating

pseudo-ensembles via the bootstrap method. When fitting
a pseudo-ensemble, the central value of each prior is drawn
randomly from its Gaussian probability distribution while
the prior width is kept the same [39,43]. To prevent large,
simultaneous but uncorrelated fluctuations among prior
central values, which could destabilize a fit, we restrict
the randomized prior central values to �1:5� ~P. Final
errors quoted for meson energies and functions thereof,
such as the spin-averaged mass, are obtained from their
bootstrap distributions. We define the upper (lower)
68% distribution point as the value at which 16% of the
distribution has a higher (lower) value. We refer to half of
the distance between these two points as the average
68% bootstrap error.

B. Dispersion relation fits: The kinetic mass

Having determined EðpÞ, we use the dispersion relation
to determine the kinetic meson mass, which we then use to
tune the hopping parameter �. The low-momentum expan-
sion for EðpÞ is

EðpÞ ¼ M1 þ p2

2M2

� a3W4

6

X
i

p4
i �

ðp2Þ2
8M3

4

þ � � � ; (4.4)
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where W4 and the deviation of M4 from M2 capture lattice
artifacts. (In the continuum limit a3W4 ¼ 0 and
M4 ¼ M2.) The vector n is defined by

ap ¼ ð2
=NLÞn; (4.5)

where NL is the spatial extent of the lattice, given in
Table I; data are generated for jnj 
 3. Noise in EðpÞ
increases with increasing momentum, though, and is sub-
stantial by the time Oðp4Þ effects become significant. For
charm-type mesons, squaring the energy yields a substan-
tial cancellation in the Oðp4Þ contribution because aM1 �
aM2 � aM4. While this is not true for bottom-type me-
sons, the mass of these mesons is large enough to cause
suppression via the 1=M factors whether EðpÞ or E2ðpÞ is
used. By fitting toE2ðpÞ then, the contributions fromOðp4Þ
effects are reduced, and we are able to do a linear fit to low-
momentum data, jnj 
 2. Setting M1 ¼ Eð0Þ from the
zero-momentum correlator, we square Eq. (4.4) and fit

E2ðpÞ �M2
1 ¼ Cp2 (4.6)

to obtain C. Finally, we set M2 ¼ M1=C. The largest p is
chosen so that the Oðp4Þ effects are expected to be negli-
gible, based on tree-level values of the analogous quark
quantities w4 and 1=m3

4. We confirm the negligibility of
these terms by inspecting plots of the data and monitoring
�2=dof. (We do not use constrained curve fitting here and
so we minimize the usual �2.) This procedure is repeated
for each bootstrap-generated pseudo-ensemble, yielding
bootstrap distributions for aM1 and aM2.

C. The hopping parameter � and the
hyperfine splitting �1

For tuning �, it is helpful to remove the leading discre-
tization errors from spin-dependent terms. Let the spin-
averaged kinetic meson mass be

�M2 ¼ 1
4ðM2 þ 3M�

2Þ; (4.7)

where M2 and M�
2 are determined as described in

Sec. IVB. This leaves the second, spin-independent term
in Eq. (2.11) as the leading source of the discretization
error, the contribution is Oða2�2Þ. Our goal then is to
determine the value of � that will result in a value of �M2

that agrees with the experimental value taken from the
Particle Data Group (PDG).

For each lattice spacing, we use the following procedure
to tune �. Using three or more ensembles, we study the
light sea-quark mass dependence of a �M2 for at least one
combination of � and m0

q. This gives us some insight into

the behavior of a �M2 in the physical sea-quark-mass limit
and allows us to assign an uncertainty to a �M2 due to
nonphysical sea-quark masses. Next, on at least one en-
semble, we determine a �M2 at two staggered, valence-
quark masses near the strange-quark mass. This allows us
to determine the dependence of a �M2 on the staggered,
valence-quark mass and interpolate linearly to the physical

value if no simulated mass is close enough to the tuned
strange-quark mass. Having dealt with the staggered-
valence and light sea-quark masses, we take a �M2 at the
physical, strange valence-quark mass at two values of �
and interpolate linearly in � to the spin-averaged value of
the meson masses, given by the PDG [45], converted to
lattice units with a from Table I. Finally, we combine the
uncertainties in the tuned value of � from statistical and
discretization errors in the meson mass, staggered-valence
mass mistuning, nonphysical sea-quark masses, and errors
from the lattice-spacing conversion of the PDG mass.
To determine the hyperfine splitting, we start with the

results for M1 ¼ Eð0Þ. For each lattice spacing, we use
values of a�1 at, or linearly interpolated to, the tuned
charm and bottom � values. We then consider uncertainties
from statistics, the tuning of � and ams, nonphysical sea-
quark masses, and discretization. The value of a�1 on the
fine lattice is taken as our central value and results on the
coarse and medium-coarse lattices are used in the error
analysis. In the final value, we also include an uncertainty
due to the conversion to physical units.

V. FITTING DETAILS FOR EðpÞ, M1, M2

In this section, we describe the details of our fitting
procedure for the meson energy EðpÞ and the meson rest
and kinetic masses, M1 and M2. Our objective here is to
document thoroughly our fitting procedures, including val-
ues for the priors, and tests. Readers who are more inter-
ested in a summary can skip to Sec. VC.
Section VA discusses the parameters used in our two-

point correlator fits for EðpÞ (Sec. VA 1) and the evaluation
of goodness of fit via �2

aug=dof and tests of stability

(Sec. VA2). In most tests discussed here, Hessian errors
were used, because they are fast and straightforward. Our
complete data set, exhibited in Table II, contains several
ensembles at each of the three lattice spacings. As ex-
plained in Sec. VA1, one ensemble at each lattice spacing
is chosen for the purpose of setting priors in Eq. (4.2). For
tuning �, we need data over a range of � and am0

q on a fixed

ensemble. At the fine lattice spacing, such data were gen-
erated on only one ensemble, (0.0062, 0.031), so we set
priors and tune � on that same ensemble. For the coarse
and medium-coarse lattice spacings, we have data for a
range of � and am0

q on several ensembles. We take the

coarse (0.010, 0.050), and medium-coarse (0.0194, 0.0484)
ensembles to set priors and then the ensembles with the
smallest am0

l (and a range of � and am0
q) to tune �. We

compute the hyperfine splittings from the same ensembles
on which � was tuned. These choices are summarized in
Table III. Data from other ensembles listed in Table II are
used to estimate uncertainties.
Fits of the dispersion relation to determine M2 from

EðpÞ are comparatively simple, and Sec. VB provides
details that may be of interest.
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A. Two-point fits: EðpÞ, M1

The number of gauge configurations in each ensemble is
given in Table I. To improve statistics, we generate data at
four time sources on each of the fine and coarse gauge
configurations and at eight time sources for medium-coarse
configurations. We also average the correlator points CðtÞ
and CðNT � tÞ. In order to reduce the effect of correlations
between data points from sequential configurations, we bin
the data by groups of Nbin configurations. Because fits for
this project were done in concert with other projects,
Nbin ¼ 4 was adopted. Comparisons of results using
Nbin ¼ 2, 4, and 6 on the ensembles used here show no
significant change in the fit-result error bars or the bootstrap
distributions. To account for correlations in the two-point
correlator data, the fitter uses the normalized, data-sample
covariance matrix as an estimate of the correlation matrix.
This matrix is remade for each bootstrap sample.

1. Priors, time ranges, N

We consider the setting of priors for the ground-state
parameters, excited-state amplitudes, and energy splittings
separately. Ground-state ( ¼ 0) parameters are well de-
termined by the data; thus, the ground-state priors can, and

should, be negligibly constraining. In contrast, energy
splittings and excited-state amplitudes are not well deter-
mined by the data, and the related priors are chosen such
that they put reasonable bounds on the parameters. The
next paragraphs describe how the priors are set. Note that
the same set of priors is used for all ensembles at a given
lattice spacing, for all momenta in the range jnj ¼ 0 to 2,
and for all � and am0

q of a given meson type, e.g., charm

pseudoscalars. The priors used are tabulated in Tables IV,
V, and VI.
We use information from a subset of our data, one

ensemble per lattice spacing, to set the priors for the two-
point–correlator fits. This is necessary because we do not
have enough external knowledge to set them indepen-
dently. The ensembles used to help set the priors are listed
in Table III. Other ensembles are statistically independent
of these ensembles and so the prior information can be
viewed as external to fits on those ensembles. If possible,
though, we do not want to exclude any data from our
analysis, including the ensembles used in the setting of
priors. For this reason, our procedure for setting priors
keeps the amount of information we take from these en-
sembles to a minimum. Specifically, for a parameter P, we
use averages over ranges of parameters, like the momen-
tum, for the prior central value ~P and chose prior widths� ~P

that are broad enough to cover the expected results for an
entire subset of fits; e.g., the same priors are used for fits
with jnj ¼ 0 to 2.
To set ground-state priors, we first fit to large-time data

with N ¼ 1 in order to get a general idea of the ground-
state parameter values. We then set N > 1 and fit correla-
tors at low and high momenta to ascertain the range of
values the ground-state parameters may take. We set prior
central values for the ground-state energy of the desired-
and opposite-parity states, aE0ðpÞ and aEp

0ðpÞ, at about the
midpoint of the range seen in these fits.

TABLE III. Specific ensembles used in steps of the analyses.
Setting priors is discussed in Sec. VA1. Stability and goodness-
of-fit tests done for EðpÞ results are described in Sec. VA2.
�-tuning and hyperfine-splitting results are given in Secs. VIA
and VIB, respectively.

Lattice Setting priors EðpÞ tests, tuning �, and the

hyperfine splitting �1

Fine (0.0062, 0.031) (0.0062, 0.031)

Coarse (0.010, 0.050) (0.007, 0.050)

Medium-coarse (0.0194, 0.0484) (0.0097, 0.0484)

TABLE IV. Priors used for fine-ensemble two-point correlator fits for pseudoscalar and vector mesons. Priors for all higher
amplitudes and splittings are the same as those for the first excited state. The fit-parameter numbers 15–20 label the second excited
state and so on. A prior of lnða�EÞ ¼ �1:45þ1:0

�1:0 on the fine ensembles corresponds approximately to �E ¼ 550þ950
�350 MeV.

Charm mesons Bottom mesons

Fit parameter Fit-parameter number Pseudoscalar Vector Pseudoscalar Vector

E0 1 0.90(40) 0.90(40) 1.75(60) 1.75(60)

E
p
0 2 1.0(40) 0.95(40) 1.85(60) 1.85(60)

lnðZ1S;0Þ 3 1.0(2.0) 1.0(2.0) 1.0(3.0) 1.0(3.0)

lnðZp
1S;0Þ 4 1.0(2.0) 1.0(2.0) 1.0(3.0) 1.0(3.0)

lnðZd;0Þ 5 �2:0ð2:0Þ �2:0ð2:0Þ �2:0ð3:0Þ �2:0ð3:0Þ
lnðZp

d;0Þ 6 �2:0ð2:0Þ �2:0ð2:0Þ �2:0ð3:0Þ �2:0ð3:0Þ
lnð�EÞ 8 �1:45ð1:0Þ �1:45ð1:0Þ �1:45ð1:0Þ �1:45ð1:0Þ
lnð�EpÞ 9 �1:45ð1:0Þ �1:45ð1:0Þ �1:45ð1:0Þ �1:45ð1:0Þ
lnðZ1S;1Þ 10 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
lnðZp

1S;1Þ 11 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
lnðZd;1Þ 12 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
lnðZp

d;1Þ 13 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
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To understand our logic for setting the prior widths
for aE0ðpÞ and aE

p
0ðpÞ, recall that we use a Gaussian

distribution for the prior ~P with a width � ~P. We set �a ~E0

and �a ~E
p
0
large enough so that results across the entire

momentum range used in the analysis should fall well
within the 1� �a ~E0

, or 1� �a ~Ep
0
, range of the distribution.

After priors for the remaining parameters are set, we
perform a complete set of fits and, for at least one ensemble
at each lattice spacing, verify that, indeed, the final fit
results for aE0 and aE

p
0 fit well within their respective

prior distributions.

Priors for the ground-state amplitudes are loosely based

on the preliminary N > 1 fits described above. In most

cases, the central value is the nearest whole number to the

average of these results. For the desired-parity state, the
widths � ~P are chosen such that they easily span the range
of values seen in the fits. For the opposite-parity states,
which are substantially noisier, the widths span the dis-
tance between the prior central value and the observed
range in the results by about 1� � ~P.
Priors for all excited-state amplitudes were set to have a

relatively small central value and a wide width. To set the
prior for the energy splitting, we note that experimentally
measured meson splittings are a few hundredMeV.We also
bear in mind that the sum of a series of exponentials with a
very small energy splitting is not a well-posed problem.
Therefore, we chose the central value of the splitting to be
several hundred MeV, slightly large, with a generous prior
width. For example, on the fine lattice the prior for the

TABLE VI. Same as Table IV, but for the medium-coarse ensembles. A prior of lnða�EÞ ¼ �1:0þ0:5
�0:5 on the medium-coarse

ensembles corresponds approximately to �E ¼ 500þ300
�200 MeV.

Charm mesons Bottom mesons

Fit parameter Fit-parameter number Pseudoscalar Vector Pseudoscalar Vector

E0 1 1.38(50) 1.46(50) 2.35(40) 2.38(50)

E
p
0 2 1.50(60) 1.58(60) 2.48(50) 2.50(50)

lnðZ1S;0Þ 3 0.48(1.0) 0.95(1.0) 0.12(1.4) 0.60(1.0)

lnðZp
1S;0Þ 4 �0:65ð1:0Þ 0.20(1.0) �1:0ð2:0Þ 0.1(2.0)

lnðZd;0Þ 5 �0:90ð1:0Þ �0:74ð1:0Þ �1:15ð1:0Þ �0:8ð1:0Þ
lnðZp

d;0Þ 6 �2:4ð1:4Þ �1:8ð2:0Þ �2:5ð3:0Þ �1:8ð3:0Þ
lnð�EÞ 8 �1:0ð0:5Þ �1:0ð0:5Þ �1:0ð0:5Þ �1:0ð0:5Þ
lnð�EpÞ 9 �1:0ð0:5Þ �1:0ð0:5Þ �1:0ð0:5Þ �1:0ð0:5Þ
lnðZ1S;1Þ 10 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
lnðZp

1S;1Þ 11 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1
lnðZd;1Þ 12 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
lnðZp

d;1Þ 13 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ

TABLE V. Same as Table IV, but for the coarse ensembles. A prior of lnða�EÞ ¼ �1:2þ0:5
�0:5 on the coarse ensembles corresponds

approximately to �E ¼ 500þ300
�200 MeV.

Charm mesons Bottom mesons

Fit parameter Fit-parameter number Pseudoscalar Vector Pseudoscalar Vector

E0 1 1.10(40) 1.2(40) 2.00(40) 2.00(40)

E
p
0 2 1.30(40) 1.3(40) 1.10(40) 1.10(40)

lnðZ1S;0Þ 3 1.0(2.0) 1.0(2.0) 1.0(2.0) 1.0(2.0)

lnðZp
1S;0Þ 4 1.0(3.0) 0.1(3.0) �1:0ð2:0Þ �0:1ð2:0Þ

lnðZd;0Þ 5 �1:0ð2:0Þ �1:0ð2:0Þ �2:0ð2:0Þ �1:0ð2:0Þ
lnðZp

d;0Þ 6 �1:0ð3:0Þ �2:0ð3:0Þ �2:0ð2:0Þ �2:0ð2:0Þ
lnð�EÞ 8 �1:2ð0:5Þ �1:2ð0:5Þ �1:2ð0:5Þ �1:2ð0:5Þ
lnð�EpÞ 9 �1:2ð0:5Þ �1:2ð0:5Þ �1:2ð0:5Þ �1:2ð0:5Þ
lnðZ1S;1Þ 10 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
lnðZp

1S;1Þ 11 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
lnðZd;1Þ 12 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
lnðZp

d;1Þ 13 �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ �1:0ð3:0Þ
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splitting, lnða�EÞ ¼ �1:45ð1:0Þ is equivalent to �E �
550þ950

�350 MeV.
In the charm sector, the opposite-parity partner of the

Dsð0�Þ, the D�
s0ð0þÞ, is close to the DK threshold. In this

case, the energy splitting should not be viewed as a meson-
mass splitting, and our choice of prior for the D�

s0ð0þÞ
energy splitting may be inappropriate. The parity-partner
signal is noisy, though, and in tests of the priors widths we
see no change in the nonoscillating ground-state energy
aEðpÞ, which is our main interest. For details, see
Sec. VA2.

To choose the time ranges for the fits, ðtmin; tmaxÞ, we first
look at the data to determine the time by which the error in
the data, e.g., the relative error in the correlator, has
increased substantially. This gives us a potential value for
tmax. From effective mass plots we can also see at what
time slice the majority of the excited-state contamination
has died off, giving us a potential value for tmin.
Constrained curve fitting is designed to reduce excited-
state contamination of the lower-state fit parameters.
Nevertheless, we do not see a significant reduction in the
error from fitting to the smallest possible time slice, which
requires including a larger number of states in the fit. For
simplicity, we chose final time ranges that are the same for
similar sets of data. These can be found in Table VII.

With the time range set, we do fits for increasing values
of the number of (pairs of) states N and look for the
ground-state energy to stabilize. We choose the final values
of N to be the minimum value needed to be in the stable
region; these are given in Table VII. Figure 1 shows
representative plots of aEðpÞ versus N from fits on the
(0.0062, 0.031) fine ensemble. It is clear that for the
minimum-value N, the central value of the fit result is
always well within the stable region. In some cases,
though, the (Hessian) error from the minimum-N fit is
smaller than that in the stable region. One could remedy
this by choosing to fit with more states. Unfortunately, an
increase in the number of states leads to non-Gaussian
bootstrap distributions with a significant number of
outliers—clearly nonphysical fit results that contain
ground states with low energies and very small amplitudes.
Using the minimum possible number of states, no outliers
have been seen in the distributions.

2. Tests of stability and goodness of fit

Having set the priors, time range, and number of states
for the fits, we check the stability of the results and good-
ness of fit in several ways. For result stability, we check the
effects of the time range used, the number of (pairs of)
states N, and changes to the prior widths; we also compare
the priors to the fit results. We look at a representative
subset of fits for each lattice spacing: pseudoscalar and
vector meson correlators at two different � values (one for
charm and one for bottom) for a given light-valence mass,
on one ensemble per lattice spacing, and with momenta
n ¼ ð0; 0; 0Þ and (1, 1, 1) or (2, 0, 0). The specific values of
�, am0

q, and ðam0
l; am

0
sÞ vary from test to test, and in some

cases tests are extended to other values. A description of
the data used in the tests discussed here can be found in
Table VIII.
For the time-range tests, we vary tmin over two to four

time slices, increasing N if appropriate, and vary tmax over
five to ten time slices. We verify that there are no changes
in the fit results beyond expected fluctuations.2 For
number-of-states tests, we verify that the result is stable
as N is increased. Figure 1 shows example results for the
(0.0062, 0.031) fine ensemble. Similar results are seen for
the coarse and medium-coarse ensembles and for the
ground-state amplitudes Z1S and Zd.
For prior-width tests, we reduce the widths by a factor of

2 for the nonoscillating ground-state quantities and the
energy splittings and repeat the fits. All changes observed
are within statistical errors and, in most cases, the changes
are substantially smaller than 1 �. For charm, we also test
for effects of theDK threshold near theD�

s0ð0þÞ state. This
splitting is 50 to 100 MeV, which is a several-�~�aEp

devia-

tion from our prior central value. We ran separate tests on
each lattice spacing using a prior width of �~�aEp

¼ 2:5 for

the oscillating-state energy splitting. In units of MeV, this
puts a 50-MeV splitting within 1�~�aEp

of the prior central

value. The ground and first-excited-state energies of the
oscillating state are affected by this change but not in a
systematic way. This indicates that the oscillating-state

TABLE VII. Time range tmin–tmax and number of (pairs of)
states N used in two-point correlator fits at each lattice spacing.
For the time range, the first (second) number in parenthesis is
tmin for the 1S-smeared (local) correlator; tmax is the same for
both correlators.

Lattice spacing Time range N

Fine (2, 4)–25 3

Coarse (2, 8)–15 2

Medium-coarse (5, 6)–15 2

TABLE VIII. Data used in stability and goodness-of-fit tests.

Lattice Ensemble � am0
q

Fine (0.0062, 0.031) 0.127; 0.090 or

0.093

0.0272

Coarse (0.007, 0.050) 0.122; 0.086 0.0415

Medium-coarse (0.0097, 0.0484) 0.125; 0.070 0.0484

2In one case, � ¼ 0:086, coarse (0.010, 0.005), although the
ground-state energy is stable as tmax is varied, the value of
�2=dof becomes large as tmax is increased beyond the final value
(tmax ¼ 15). This ensemble is not used directly for � tuning or
hyperfine-splitting determinations as explained in the introduc-
tion to this section.
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signal is not strong in our data. Our main interest, though,
is the nonoscillating ground-state energy aEðpÞ; this value
is unaffected by the change in �~�aEp

.

In addition, we compare fit results with their priors.
Figure 2 gives examples of these comparisons for fits on
the (0.0062, 0.031) fine ensemble for charm- and bottom-
type mesons. The x axis labels the fit-parameter number,
defined in Table IV; the ground-state energy and ampli-
tudes of the desired-parity state are at positions 1, 3, and 5.
We find that fit results for ground-state quantities are well
within the prior widths. For excited states, in some cases
the fitter simply returns the prior value, indicating that the
quantity is not constrained by the data. In other cases, the
results appear to be constrained by the data, indicating that
some excited-state signal is in the correlator and the fitter
adjusts the amplitudes to absorb it. Although it may appear
in Fig. 2 that a number of excited-state quantities are well
determined, this is an artifact of a minimum-N fit; unlike
the ground-state parameters, the excited-state results are

not stable as N is increased. For example, Fig. 3 compares
the fit results shown in the upper left (pseudoscalar) panel
of Fig. 2(a), which usesN ¼ 3, with a fit which only differs
by the use ofN ¼ 4. The comparison demonstrates that the
(desired-parity) ground-state quantities are stable to the
change in N while other, excited-state, parameters are not.
For goodness of fit we begin by looking at the aug-

mented �2=dof for each fit and verify that it is � 1 or
smaller, where ‘‘� 1’’ is based on the 80% range of the
�2=dof distribution for a given number of degrees of free-
dom. As a final check, we overlay the result on an
effective-mass plot. We define the ‘‘effective energy’’

2aEeffðpÞ ¼ ln½CðtÞ=Cðtþ 2aÞ� (5.1)

using a step of two time units in order to accommodate the
oscillating contribution from the opposite-parity state.
Figure 4 shows plots comparing aEeffðpÞ to the fit result
on the (0.0062, 0.031) fine ensemble. The ground-state-
energy result from the multiple-state fit is shown as a
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FIG. 1 (color online). Fitted values of aEðpÞ vs the number of (pairs of) states N for � ¼ 0:127, charm-type (a) pseudoscalar and
(b) vector mesons and � ¼ 0:090, bottom-type (c) pseudoscalar and (d) vector mesons on the (0.0062, 0.031) fine ensemble. Results
shown are for mesons with momenta n ¼ ð0; 0; 0Þ and (2, 0, 0). Errors are Hessian.
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straight line segment over the time range fit. The band
encompasses the average 68% bootstrap error. In each
case, the fit result nicely matches the effective-energy
plateau.

B. The kinetic mass M2

Given results for aEðpÞ, we fit data where jnj 
 ffiffiffi
3

p
to

Eq. (4.6) to determine the pseudoscalar and vector kinetic
meson masses. Fits use a correlation matrix constructed
from the bootstrap distributions. The tables in Appendix B
give results for aM2, aM

�
2, and a

�M2 on the ensembles used
for tuning, listed in Table III. Included in the tables are the
�2=dof and the probability that �2 would exceed the value
from the fit, known as the p value [45]. Typical dispersion

relation fits are shown for the (0.0062, 0.031) fine ensemble
in Fig. 5.
In addition to statistical errors, we consider uncertainties

from unphysical sea-quark masses, mistuning of the va-
lence strange quark, and discretization. The noise in �M2

makes it difficult to discern how �M2 depends on the sea-
quark masses. The �M1 data is much cleaner, though, and
we can use it to estimate the sea-quark error on �M2, and
hence �. To do this, we first note that, cf. Eq. (2.12),

aM1 ¼ am1 þ a ��lat þOð1=mQÞ; (5.2)

aM2 ¼ am2 þ a ��lat þOð1=mQÞ; (5.3)
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FIG. 2 (color online). Fit results shown as open (blue) circles are overlaid on the priors, black dots with dashed widths, for charm-
type (a) pseudoscalar and (b) vector mesons and bottom-type (c) pseudoscalar and (d) vector mesons on the (0.0062, 0.031) fine
ensemble. � ¼ 0:127 and 0.090 for charm- and bottom-type mesons, respectively; am0

q ¼ 0:0272. The upper [lower] plot is from a fit

where the meson has momentum of n ¼ ð0; 0; 0Þ [(2, 0, 0)]. The fit-parameter numbers are defined in Table IV. In each panel, the
leftmost cluster corresponds to quantities from the ground state; the middle cluster corresponds to the first excited state; and the right
most cluster to the second excited state. Errors on the fit results are Hessian. For clarity, fit results are offset along the x axis.
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where am1 and am2 capture the leading heavy-quark de-

pendence and ��lat depends only on the light degrees of

freedom. Taking a ��lat to be the same for both a �M1 and
a �M2 (see Appendix A and Ref. [46]) we can estimate the
size of the effect of nonphysical (light) sea-quark masses

on a ��lat, and hence aM2, by studying the behavior of aM1

as the light sea-quark masses are varied.
In Fig. 6, we plot the spin-averaged meson rest mass

r1 �M1 versus the ratio of the light to strange sea-quark
masses m0

l=m
0
s for the coarse and fine ensembles used

here. On the far right of each plot is a bar indicating the
size of the 1� � statistical error on r1 �M2; for fine this is
from the (0.0062, 0.031) ensemble and for coarse the
(0.007, 0.050) ensemble. The light sea-quark mass depen-
dence is negligible compared to the statistical error on
r1 �M2. We find similar behavior for the medium-coarse
ensemble.

We must also consider how the nonphysical value of the
strange sea-quark mass affects �M2. The strange sea-quark
mass is mistuned by an amount 0:19am0

s, 0:31am
0
s and

0:12am0
s on the fine, coarse, and medium-coarse ensem-

bles, respectively. The continuum chiral perturbation the-
ory expression for the heavy-light spin-averaged mass [47]
shows that the leading sea-quark dependence of �M2

is proportional to the sum over the sea-quark masses,
2m0

l þm0
s. Hence, varying am0

l tells us about the effect of

varying am0
s. Figure 6 shows that a change of 0:3am0

s in
am0

l has a negligible effect on
�M2, so we conclude that the

mistuning of am0
s has a negligible effect as well.

The tuned value of the strange-quark mass on each
ensemble is given in Table I. On the fine lattice, the

valence-quark mass used in the simulation, am0
q ¼

0:0272, differs from the physical value ams ¼ 0:0252 by
0.0020. A comparison of our results for a �M2 in
Table XVIII shows that even a deviation in am0

q of twice

this size does not discernibly affect a �M2. The situation is
similar for the coarse and medium-coarse results. For the
coarse ensembles, the simulation mass am0

q ¼ 0:03 differs

by 0.0044 from the tuned value of ams. Table XIX shows
that a �M2 is barely affected at the 1� �a �M2

level as am0
q

changes by over twice this size. For the medium-coarse
ensembles, the simulation mass of 0.0484 differs from the
tuned strange-quark mass by 0.0058. A comparison of the
values of a �M2 in Table XX shows that a deviation in am0

q

just under twice this size yields, at most, a 1� �a �M2

variation in a �M2. Therefore, we take our results of a �M2

at am0
q ¼ 0:0272, 0.03, and 0.0484 as the masses of the Bs

and Ds on the fine, coarse and medium-coarse ensembles,
respectively, with no additional error for valence-mass
mistuning.
In Appendix A, we derive an expression for the discre-

tization error in M2, M2 ¼ Mcontinuum þ �M2. The result,
Eq. (A22), can be written as

�M2 ¼
��2

6m2

�
5

�
m3

2

m3
4

� 1

�
þ 4w4ðm2aÞ3

�
; (5.4)

replacing hp2i of Eq. (A22) with ��2. Expressions for the
short-distance coefficients m2, m4, and w4 are given in
Appendix A [14,23]. To estimate the discretization error,
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FIG. 3 (color online). Fit results shown as open (blue) circles are overlaid on the priors, black dots with dashed widths, for charm-
type mesons on the (0.0062, 0.031) fine ensemble. � ¼ 0:127; am0

q ¼ 0:0272; n ¼ ð0; 0; 0Þ. The upper plot is the same as the upper left

(pseudoscalar) panel of Fig. 2(a). The lower plot is from a fit which only differs by the use of N ¼ 4 pairs of states. The fit-parameter
numbers are defined in Table IV. In each panel, the leftmost cluster corresponds to quantities from the ground state; the middle cluster
corresponds to the first excited state; the next cluster corresponds to the second excited state and so on. The (desired-parity) ground-
state quantities are stable to this change while other, excited-state, parameters are not. Errors on the fit results are Hessian. For clarity,
fit results are offset along the x axis.
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we use values of the physical (pole) quark mass (1.4 GeV
for charm and 4.2 GeV for bottom) for m2 in the prefactor

of Eq. (5.4), and �� ¼ 0:7 GeV. Using these values, u0
from Table II, and �crit from Table XVII yields the values
of �M2 shown in Table IX. The error estimate in Eq. (5.4)
pertains to the kinetic mass, but the main focus here is the
tuning of �. After tuning, we shall propagate this error
from M2 to �c and �b.

C. Fitting summary

The preceding subsections contain many details in-
tended for those engaged in similar analyses. In this sec-
tion, we re-emphasize the main features of the analysis.
Because, in this and related [3–8] work, we are interested
in the ground state, we do not dwell on the excited states
here.

Our priors are guided by the data, using one ensemble to
set them and (generally) other ensembles for physical
results. We choose a time range such that the fit results
for the ground state are stable, listed in Table VII. We also
test for stability as the number N of (pairs of) exponentials
grows—as shown in one example in Fig. 1—and choose
the minimum value of N for which the central value is
stable within errors. The errors on the ground-state ampli-
tudes and energies are always determined by the data, not
the priors, as shown in Fig. 2 and 3. (In many cases, even
excited-state information is data-determined, not prior de-
termined.) Figure 4 shows that the fits agree with the
effective energies. (Note that the oscillations of aEeff at
small t are to be expected with staggered quarks.) In
conclusion, the constrained curve fitting for EðpÞ has
worked as advertised, subsuming the subjectivity of fit
ranges and different choices of N into robust results for
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FIG. 4 (color online). Effective energy plots, aEeffðpÞ, for charm-type (a) pseudoscalar and (b) vector mesons and bottom-type
(c) pseudoscalar and (d) vector mesons on the (0.0062, 0.031) fine ensemble. � ¼ 0:127 and 0.093 for charm- and bottom-type mesons,
respectively; am0

q ¼ 0:0272. The upper [lower] plot is from a fit where the meson has momentum of n ¼ ð0; 0; 0Þ [n ¼ ð2; 0; 0Þ]. Open
(blue) triangles mark the local correlator and open (red) circles mark the 1S-smeared correlator. Lines connecting the data points are
simply to guide the eye; they are not a fit. The unadorned black line is the multicorrelator fit result and the shaded band marks the
average 68% bootstrap error.
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both the central value and error bar. Figures 5 and 6 show
that, once EðpÞ is well determined, we can straightfor-
wardly obtain the kinetic mass M2 and the hyperfine
splitting.

VI. RESULTS

In this section, we present the main results of these
calculations, including our error analysis. Section VIA
focuses on the tuned values of �c and �b, Sec. VI B on

the Ds and Bs hyperfine splittings, and Sec. VIC on the
critical value of the hopping parameter �crit.

A. The tuning of �c and �b

As discussed in Sec. VB, effects from nonphysical sea-
quark masses and the mistuning of the valence strange-
quark mass are negligible compared to the statistical error
on a �M2. In that section, we explain why taking a �M2 at
certain values of am0

q is an acceptable approximation to
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FIG. 5 (color online). Results of fits to the dispersion relation for (a) charm-type (� ¼ 0:127) and (b) bottom-type (� ¼ 0:0923)
mesons on the (0.0062, 0.031) fine ensemble. (Blue) dots are the data. A black line shows the fit result with the (pink) shaded band
showing the one-sigma error from the fit. Upper panels show results for pseudoscalars and lower for vectors.
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FIG. 6 (color online). The spin-averaged meson rest mass in physical units versus the ratio of the light to strange sea-quark masses
m0

l=m
0
s for the (a) fine and (b) coarse ensembles. Error bars are statistical only, from the average 68% bootstrap error. On the far right of

the plot is a (red) bar indicating the size of the one-sigma statistical error on r1 �M2. The upper-panel plot is for charm-type mesons,
lower is for bottom-type. Values of � used are 0.127, 0.0923 on the fine ensembles with am0

q ¼ 0:0272 and � 0.122, 0.086 on the coarse

ensembles with am0
q ¼ 0:0415.
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a �M2 at the tuned physical strange-quark mass. We choose
to tune � at those same am0

q, which are am0
q ¼ 0:0272 on

the (0.0062, 0.031) fine ensemble, am0
q ¼ 0:03 on the

(0.007, 0.050) coarse ensemble, and am0
q ¼ 0:0484 on

the (0.0097, 0.0484) medium-coarse ensemble.
To obtain the tuned � for the charm (bottom) quark, �c

(�b), we want to interpolate �M2 to the PDG value of the
spin-averaged Ds (Bs) mass [45]. In practice, it is simpler
to do the interpolation with the meson mass in lattice units.
Hence, we linearly interpolate a �M2 to a �MPDG, the PDG
value for the meson mass converted to lattice units with a
from Table I. This interpolation is repeated for the entire

bootstrap distribution of a �M2. We then estimate the statis-
tical error on � as the average 68% bootstrap error de-
scribed in Sec. IVA. The discretization error inM2, �M2, is
given by Eq. (5.4), and is always positive. This results in a
single-sided, negative error bar on �. We convert �M2 to
the error, ��, using dM2=d� � dm2=d� and expressions
form0a andm2a given in Appendix A. The �� are given in
Table IX. The experimental errors on the PDG values are
negligible. The remaining errors to consider are those
which appear in the conversion between lattice and physi-
cal units. The error in the determination of r1=a is negli-
gible, so we only need to consider the error in r1, given in
Eq. (3.2).
The error on r1 is propagated to an error on a

�1 and then
to an error on a �MPDG, denoted �PDG. Table X gives the
values of the PDG meson masses used in this work and
tabulates their spin-averaged mass and hyperfine splitting.
Table XI gives the spin-averaged mass in lattice units. The
uncertainty �PDG is propagated to � using the standard
error formula �� ¼ �PDG=s, where s is the slope used in
the interpolation. Table XII gives the error budget for �c

and �b, and Table XIII lists the final tuned results.

TABLE IX. The relative error in the tuned hopping parameter ��=� due to discretization effects in the kinetic meson mass. The
ensembles used are (0.0062, 0.031), (0.007, 0.050), and (0.0097, 00484) for the fine, coarse, and medium-coarse lattices, respectively.
Values of � are 0.127 and 0.0923 on fine; 0.122 and 0.086 on coarse; and, 0.122 and 0.076 on medium-coarse. The ½� � �� denotes the
quantity in brackets in Eq. (5.4). We use ð ��2=6mchÞ ¼ 0:058�3 and ð ��2=6mbotÞ ¼ 0:019�4 to convert the ½� � �� to �M2. Values of ��=�
are given as fractions not a percentage.

Charm Bottom

Lattice spacing m0a ½� � �� �M2
dm2a
dm0a

��
� m0a ½� � �� �M2

dm2a
dm0a

��
�

Fine 0.391 1.31 0.0763 0.843 �0:0086 2.08 16.8 0.327 0.880 �0:0256
Coarse 0.565 2.37 0.1384 0.831 �0:0203 2.62 23.6 0.459 0.899 �0:0440
Medium-coarse 0.682 3.18 0.1857 0.830 �0:0346 3.56 37.2 0.724 0.922 �0:0756

TABLE XII. Percent errors in the tuned � and the total error. For several sources of uncertainty, we determined that the error was
smaller than the precision of these calculations. This is indicated by an entry of ‘‘0.0’’ in the table.

Charm Bottom

Uncertainty Fine Coarse Medium-coarse Fine Coarse Medium-coarse

Statistical 1.26 0.57 0.53 5.0 9.1 5.6

Discretization ð0;�0:86Þ ð0;�2:0Þ ð0;�3:46Þ ð0;�2:6Þ ð0;�4:4Þ ð0;�7:56Þ
Sea-quark masses 0.0 0.0 0.0 0.0 0.0 0.0

ams mistuning 0.0 0.0 0.0 0.0 0.0 0.0

Unit conversion (a) ðþ0:90;�0:35Þ ðþ0:49;�0:19Þ ðþ0:77;�0:30Þ ðþ1:7;�0:64Þ ðþ1:9;�0:72Þ ðþ1:76;�0:66Þ
Total (1.5, 1.6) (þ 0:75;�2:1) (þ 0:93;�3:5) (þ 5:3;�5:7) (þ 9:3;�10:1) (þ 5:9;�9:4)

TABLE X. PDG values of the pseudoscalar and vector masses
for theDs and Bs mesons and the hyperfine splitting� [45]. Also
listed is the derived quantity �M, the spin-averaged mass.

M (GeV) M� (GeV) �M (GeV) � (MeV)

Ds 1.968 49(34) 2.1123(5) 2.0763(4) 143.9(4)

Bs 5.3661(6) 5.4120(12) 5.4005(9) 46.1(1.5)

TABLE XI. Spin-averaged PDG masses converted to lattice
units with an error from the uncertainty in the lattice spacing a.
Values of a used in the conversion can be found in Table I.

Ensemble a �MDs
a �MBs

Fine (0.0062, 0.031) 0:884þ0:009
�0:023 2:299þ0:023

�0:060

Coarse (0.007, 0.050) 1:242þ0:012
�0:032 3:230þ0:031

�0:083

Medium-coarse (0.0097, 0.0484) 1:529þ0:015
�0:039 3:977þ0:038

�0:102

TABLE XIII. Final tuned results for �c, �b with the total error.

Fine Coarse Medium-coarse

�c 0.127(2) 0:1219þ9
�25 0:122þ1

�4

�b 0.090(5) 0:082ð8Þ 0:077þ5�7
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B. The rest mass and hyperfine splitting

In this section, we discuss the uncertainties in our cal-
culation of the hyperfine splitting and compare our final
results, for the Bs andDs systems, with the PDG values. To
support the discussion, we tabulate our results for the
pseudoscalar and vector meson rest masses and the hyper-
fine splitting, aM, aM�, a�1, r1�1, in Tables XXI, XXII,
XXIII, XXIV, XXV, and XXVI in Appendix C. Statistical
errors in these tables are the average 68% bootstrap errors
described in Sec. IVA. The other errors we consider are the
mistuning of the valence strange-quark mass, unphysical
sea-quark masses, the uncertainty in the tuning of �, dis-
cretization effects, and the conversion to physical units. For
the central value, at each lattice spacing, we take a�1 at the
tuned values of �c and �b, linearly interpolating in � when
necessary.

PDG results for the hyperfine splitting show a weak
dependence on the light-quark valence mass, so we expect
the mistuning in the simulated valence strange-quark mass
to have a negligible effect.3 The simulation valence masses
am0

q ¼ 0:0272, 0.03, 0.0484 for the fine, coarse, and

medium-coarse lattices, respectively, differ from the physi-
cal ams given in Table I by 0.0020, 0.0044, 0.0058, re-
spectively. Tables XXI, XXII, and XXIII show that, indeed,
these small mistunings have a negligible effect on the
hyperfine splitting. Hence, we do not interpolate to ams;
rather, we take a�1 at the valence masses am0

q listed above

as the result at the physical strange valence-quark mass and
take the error for this approximation to be negligible.

To estimate the error due to the nonphysical values of the
sea-quark masses we use partially quenched chiral pertur-
bation theory. The needed expression is derived in
Appendix D and we repeat Eq. (D1) here for convenience.
The hyperfine splitting M�

x �Mx of a heavy-light meson
with light-valence quark x is

M�
x �Mx ¼ �� �g2


8
2f2
�log þ 2�ð�Þð2ml þmsÞ

þ 2�ðaÞmx; (6.1)

where �log contains the chiral logs, ml and ms are the light

and strange sea-quark masses, and �ð�Þ and �ðaÞ are
counter terms which must be determined from the lattice
data. Working at a fixed value of mx, we can use the
difference of splittings at different values of ml to deter-

mine �ð�Þ. Given �ð�Þ, we can find the difference between
the splitting at simulation values of ðm0

l; m
0
sÞ and the physi-

cal values ðml;phys; ms;physÞ. We take this difference as the

error due to the nonphysical sea-quark masses.
We have tabulated values of the hyperfine splitting

in physical units, r1�1, in Tables XXIII, XXIV, and
XXV in Appendix C 2. Figure 7 shows how r1�1 varies
with the light sea-quark mass on fine and coarse lattices.
From Fig. 7, it is clear that, due to statistical variation in the
splitting, using the difference in the central values of split-
tings from any two points will yield different values for

�ð�Þ. For the fine and coarse ensembles, we look only at the
aml=ams ¼ 0:4 to 0.1 and aml=ams ¼ 0:4 to 0.2 differ-
ences and take the one that gives the larger error; for
medium coarse, we have no aml=ams ¼ 0:1 data and so
take the error from the aml=ams ¼ 0:4 to 0.2 difference.
For the error estimate, we take f ¼ 131 MeV and g
 ¼

0:51 [48]. We relate meson to quark masses by
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FIG. 7. The hyperfine splitting, in units of r1, versus the ratio of the light to strange sea-quark masses m0
l=m

0
s on (a) fine and

(b) coarse ensembles. Errors are the average 68% bootstrap error. The upper panel in each plot is for charmlike splittings and the lower
panel is for bottomlike splittings. Values of � are 0.127, 0.0923 for the fine ensembles and 0.122, 0.086 for coarse ensembles. Values of
am0

q are 0.0272 and 0.0415 for the fine and coarse ensembles, respectively.

3For X ¼ B or D, the difference between the MX�
s
�MXs

splitting and the MX� � XX splitting is measured to be about
1% or less [45].
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M2
xy ¼ B0ðmx þmyÞ; (6.2)

where B0 is determined empirically with r1B0 ¼ 6:38,
6.23, 6.43 on the fine, coarse, and medium-coarse lattices,
respectively. These values of B0 come from tree-level fits
to MILC light-meson data, as described in Refs. [2,11,35].

We calculate �ð�Þ for each meson type, Bs and Ds, at each
lattice spacing. We then calculate the difference

ðM�
x �MxÞsim � ðM�

x �MxÞphys; (6.3)

where the subscript ‘‘sim’’ (‘‘phys’’) denotes simulation
(physical) sea-quark mass inputs ðaml; amsÞ. For the physi-
cal masses, we use ðaml;phys; ams;physÞ ¼ ð0:000 92;
0:0252Þ; ð0:001 25; 0:0344Þ; ð0:001 54; 0:0426Þ for the fine,
coarse, and medium-coarse lattices, respectively. These
values of the quark masses are taken from Ref. [11], after
adjustment for the r1 scale used here. The simulation
masses are those on the (0.0062, 0.031) fine, (0.007,
0.050) coarse, and (0.097, 0.0484) medium-coarse ensem-
bles. The error calculated in this manner is labeled ‘‘sea-
quark masses’’ in Tables XIV and XV.

For the uncertainty in a�1 due to the error in �, recall
that the non-negligible sources of the error in �, from
Table XII in Sec. VIA, are statistics, units conversion,
and of the discretization error in M2. Because we want to
consider discretization errors separately from all others, we
start by considering only the �-tuning error that comes
from statistics and units-conversion. To convert the error in
� to an error in a�1, we look at the change in a�1 between
two values of � on the (0.0062, 0.031) fine, (0.007, 0.050)
coarse, and (0.0097, 0.0484) medium-coarse ensembles;
specific values can be found in Tables XXI, XXII, and
XXIII. This is the error labeled ‘‘� tuning’’ in Tables XIV
and XV.

For theDsðBsÞmeson, Table XIVand XV gives the error
budget for a�1 at each lattice spacing, from all sources
except discretization. These are statistics, valence-mass
mistuning, unphysical sea-quark masses, and � tuning. In
Fig. 8, these values are plotted as black, filled dots.

We now consider the three, distinct sources of the dis-
cretization error in a�1. The first is indirect, coming from
the discretization error in aM2, which is propagated to an
error on � as discussed in Sec. VIA. This error can be
traced to a mismatch between the spin-independent Oðp4Þ
terms in Eq. (2.8) (not given explicitly) and the correspond-
ing terms in the effective Lagrangian for continuum QCD.
These terms contribute to a �M2 as discussed in Appendix A.
The second source of the discretization error is a direct
result of the lattice-continuum mismatch of the dimension-
seven operator fi� �B;D2g [23].4 The third source of the
discretization error is the Oð�sÞ mismatch in the coeffi-
cient of the i� � B operator in Eq. (2.10). For the discussion

of the error estimates below, it is useful to recall that the
heavy-quark dynamics associate m2 with the physical
quark mass. Mismatches between m2 and the generalized
masses associated with other operators capture the heavy-
quark discretization effects. We now give numerical esti-
mates of the error from each source.
Our estimate of the discretization error in a �M2 and its

inclusion in the error on � is discussed in Sec. VIA. In
Fig. 8, the value of r1�1 with an error that includes only the
uncertainty due to the discretization error on � is shown as
an open (blue) circle with a dashed error bar. Note, as
described in Sec. VB, this uncertainty estimate depends
on one’s choice of �QCD. In this paper, we use �QCD ¼
0:7 GeV. Choosing �QCD ¼ 0:5 GeV would cut the error

on � in half and decrease the error on r1�1.
Next we estimate the contribution from the dimension-

seven operator fi� �B;D2g. Using the notation of
Ref. [23], summarized in Sec. A 4, this operator’s contri-
bution to the hyperfine splitting has a coefficient

1

ðmB0aÞ3 ¼ 1

ðm4aÞ3
; (6.4)

where the equality holds at the tree level for the choices of
parameters in our action. The difference between am4 and
am2 captures the discretization error. The fractional error
in the hyperfine splitting due to this mismatch is

ða�QCDÞ22am2

�
1

ð2am4Þ3
� 1

ð2am2Þ3
�
: (6.5)

This error is plotted as a (green) dash-dot line on an X in
Fig. 8. It would be added in quadrature with the error on the
filled dot, if it were to be included in the total error. Again

TABLE XV. Percent errors in the hyperfine splitting, a�1, of
Bs not including discretization effects.

Uncertainty Fine Coarse Medium-coarse

Statistical 9.5 4.0 5.6

� tuning ð12;�11Þ ð17;�17Þ ð11;�10Þ
Valence ms 0 0 0

Sea-quark masses 17 7.8 2.6

Total ð23;�22Þ ð19;�19Þ ð13;�12Þ

TABLE XIV. Percent errors in the hyperfine splitting, a�1, of
Ds not including discretization effects.

Uncertainty Fine Coarse Medium-coarse

Statistical 2.2 1.9 1.9

� tuning ð8:8;�7:5Þ ð4:0;�3:1Þ ð4:0;�2:7Þ
Valence ms 0 0 0

Sea-quark masses 3.6 5.4 6.9

Total ð10;�9Þ ð7;�7Þ ð8;�8Þ

4Other dimension-six and -seven operators are either redun-
dant, loop suppressed, or known to have small coefficients [23].

C. BERNARD et al. PHYSICAL REVIEW D 83, 034503 (2011)

034503-18



we take �QCD ¼ 0:7 GeV, but choosing �QCD ¼ 0:5
would cut these error bars in half. The error from
Eq. (6.5) is small for the Ds splitting at the fine lattice
spacing, but increasingly large and non-negligible at the
coarse and medium-coarse lattice spacings; for the Bs

splitting, the error is negligible.
Finally, we turn to the effects of the Oð�sÞ mistuning in

cB, which leads to an Oð�sÞ mismatch between mBa and
m2a. Ideally, cB should be adjusted so the coefficient of
�hðþÞi� � BhðþÞ equals ZB=2m2, where ZB is a coefficient

with an anomalous dimension, such that ZB
�hðþÞi� �BhðþÞ

is scale and scheme independent [49]. In practice, cB is
chosen in some approximation, in our case the tadpole-
improved tree level of perturbation theory.

Given a value of cB, our simulations produce

M�
1 �M1 ¼ �1 ¼ 4�2

2mBðcBÞ : (6.6)

From Eq. (A26), we see that 1=amB has a contribution
cB=ð1þm0aÞ. Hence, to include the leading correction to
the hyperfine splitting, we shift

4�2a

�
1

2amBðcBÞ
�
! 4�2a

�
1

2amBðcBÞ þ
cidealB � cB
2ð1þm0aÞ

�
;

(6.7)

where cidealB is the ideal choice. (Because loop corrections
to 1=amB depend on cB, subleading corrections also exist.)
To estimate the error in�1, we have to estimate cidealB � cB.
In fact, Eq. (6.7) can also be used to shift the central value
of the hyperfine splitting.

Reference [50] describes preliminary work on a calcu-

lation of the one-loop corrections to c½1�B , as a function of the
bare-quark mass. For all relevant values of m0a, the one-
loop effects are a small correction to the tadpole-improved
Ansatz cB ¼ u�3

0 , provided that u0 is the average link in

Landau gauge. On the coarse ensembles, we chose u0 this
way, and we can estimate the remaining correction directly
from the calculation in Ref. [50]. Given further uncertain-
ties from higher orders, we take this small correction as an
uncertainty estimate. On the medium-coarse and fine en-
sembles, however, we chose u40 to be the average plaquette.
In those cases, the leading correction to cB comes from,

cidealB � cB ¼ u�3
0;LL � u�3

0;plaq; (6.8)

where the labels refer to ‘‘Landau-gauge link’’ and ‘‘pla-
quette.’’ Equation (6.8) leads to significant corrections to
the hyperfine splitting, sowe shift�1 on themedium-coarse
and fine ensembles by the amount corresponding to
Eq. (6.7) and (6.8). These shifts put �1 at the medium-
coarse and fine lattice spacings on the same footing as those
at the coarse spacing. Empirically, they flatten the lattice-
spacing dependence.
For the medium-coarse and fine data, we use the values

of u0 given in Table XVI to calculate the shift described
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FIG. 8 (color online). Hyperfine splittings in r1 units versus the squared lattice spacing a2 (fm2) for the (a) Ds meson and (b) Bs

meson. Filled (black) dots with a solid error bar show the splitting with an error from all sources except discretization. Open (blue)
circles with a dashed error bar show the splitting with an error that also includes discretization error effects in �. (Green) X’s with dash-
dotted error bars show the estimated size of discretization effects from the lattice-continuum mismatch of the dimension-seven
operator fi� � B;D2g—the errors are barely visible for the Bs system. (Pink) stars with a dotted error bar show theOð�sÞ discretization
error from the 1-loop mismatch between m2 and mB. For the difference between the Oð�sÞ discretization effects on the coarse lattice
versus the fine and medium-coarse lattices, see the text.

TABLE XVI. Tadpole-improvement factors for the estimate of
the Oð�sÞ discretization error shown in Fig. 8.

Ensemble u0;plaquette u0;Landau

Fine (0.0062, 0.031) 0.878 0.854

Medium-coarse (0.0097, 0.0484) 0.860 0.822
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above. It is displayed in Fig. 8 as a (pink) star with a single-
sided, positive error bar. To obtain an error bar correspond-
ing to the one-loop correction to cB in Ref. [50], we take
�sð0:09 fmÞ ¼ 1=3 and use one-loop running to obtain
values of �s for the coarse and medium-coarse lattices.
These corrections are shown in Fig. 8 as a (red) triangle
with a solid error bar.

In summary, discretization errors in the hyperfine split-
ting are small at the fine lattice spacing; therefore, we take
as our final results the splittings calculated on the fine
lattice. In addition, since the effect of the leading Oð�sÞ
mistuning of cB can be quantified, we shift our final central
values by this amount. All other discretization errors are
included in our final error. We convert our results to
physical units using the values of r1=a and r1 as listed in
Table I. After including the error from the units conversion
in the total, our final results for the hyperfine splittings are

�Ds
¼ 145� 15 MeV; (6.9)

�Bs
¼ 40� 9 MeV: (6.10)

These results are in good agreement with the PDG values
of 143:9� 0:4 MeV and 46:1� 1:5 MeV, respectively.

C. The critical hopping parameter �crit

In principle, it is possible to carry out a suite of non-
perturbative heavy-quark calculations without knowing
�crit, but in practice �crit is useful. In particular, it enters
the construction of improved bilinear and 4-quark opera-
tors via m0a Eq. (2.5). It also enters the computation of
matching factors such as ZV and ZA [18]. Note that these
all amount to small corrections, so we do not need a very
precise determination of �crit. Equation (2.5) shows that it
does not have to be much better determined than �c and �b.

A nonperturbative definition of �crit is the value of �
such that the mass of a pseudoscalar meson consisting of
two Wilson quarks (with the clover action) vanishes. The
computation of these light-light pseudoscalar meson
masses shares code with the work reported here and in
Ref. [8], and it is convenient to report the analysis here.
The value of �crit depends on u0 via our choice of clover
coupling, cB ¼ cE ¼ u�3

0 . In this and other work [3–8], u0
has been set sometimes from the average plaquette and
sometimes from the average link in Landau gauge. The
prescription for u0 used in each �crit determination is given
in column four of Table XVII.
The determination of �crit is carried out on a subset of the

available configurations, 50–100 configurations for the fine
ensembles and 400–600 for the coarse and medium-coarse.
We compute two-point correlators for a range of � that
yields meson masses of about MPS ¼ 450–900 MeV on
the fine ensembles, 650–1100 MeV on the coarse ensem-
bles, and 550–950MeVon themedium-coarse ensembles. It
is impractical to push to lower MPS due to exceptional
configurations.MPS is a function of the quark mass, which
we parametrize as the tree-level, tadpole-improved kinetic
or rest mass. In the relevant region, m1;2a ¼ m0a½1�
1
2m0a� þOððm0aÞ3Þ, so both pertain equally well. The me-

son masses can be fit to a polynomial ansatz

a2M2
PSð�Þ ¼ Aþ Bam2ð�; �critÞ þ Ca2m2

2ð�; �critÞ
(6.11)

(or m1 instead of m2), where A ¼ 0 when �crit is correctly
adjusted.
We use two techniques to determine �crit. One method

starts with a reasonable value of �crit and fits Eq. (6.11) to
obtainA,B, andC, which depend implicitly on�crit. A better
trial value of �crit is chosen, and the process is iterated until a
�crit is found such that A ¼ 0. We call this the ‘‘iterated fit.’’

TABLE XVII. Values of �crit by ensemble. ‘‘u0 used’’ gives the origin of the u0 value used in the �crit determination. �crit values are
given in two columns. The first �crit column contains values which were determined by a fit. The second �crit column contains values
which were estimated from fitted values at the same (approximate) lattice spacing. The last column gives the fit method used in the
determination, explained in the text.

�crit

Lattice ðam0
l; am

0
sÞ u0 used Iterated fit Direct fit Estimated

Fine (0.0031, 0.031) Landau-gauge link 0.1372

(0.0062, 0.031) Landau-gauge link 0.1372

(0.0062, 0.031) plaquette 0.1391

(0.0124, 0.031) Landau-gauge link 0.1372

Coarse (0.005, 0.050) Landau-gauge link 0.1379

(0.007, 0.050) Landau-gauge link 0.1379

(0.010, 0.050) Landau-gauge link 0.1379

(0.020, 0.050) Landau-gauge link 0.1378

(0.030, 0.050) Landau-gauge link 0.1377

Medium-coarse (0.0097, 0.0484) Plaquette 0.1424

(0.0194, 0.0484) Plaquette 0.1424

(0.0290, 0.0484) Plaquette 0.1423
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The secondmethod freezesA to zero, and thenB,C, and�crit

are the fit parameters.We call this the ‘‘direct fit.’’ On several
ensembles the �crit values were simply estimated from the
other ensembleswith the same (approximate) lattice spacing,
these are labeled as ‘‘estimated.’’

Table XVII contains our results for �crit, indicating the
method used. The table does not include error bars for �crit,
but we believe that the results are correct to the number of
significant figures shown, even though the range of MPS is
high. We carried out several tests to verify this accuracy.
We compared linear iterated fits [i.e., C ¼ 0 in Eq. (6.11)]
to the baseline quadratic. We also compared direct fits with
and without the (continuum) chiral log. These test show
that higher order or log contributions do not alter our
values of �crit significantly. We fit comparable data with
staggered valence quarks allowing ðm0aÞcrit � 0, thereby
testing whether a range of such largeMPS skews the results.
None of these tests suggests an error larger than a few in
the fourth digit. Such errors are negligible compared to
those for �c and �b—see Tables XII and XIII—when
forming m0a with Eq. (2.5).

VII. SUMMARYAND OUTLOOK

An accurate and precise determination of �c and �b

is important for all calculations using the Fermilab action
[3–8]. In this analysis, the error on �b is dominated by
statistics, and the error on �c receives approximately equal
contributions from statistics and discretization effects.
These errors play a significant role on quantities as diverse
as D- and B-meson decay constants [3] and the quark-
onium hyperfine splitting [8]. Our final results for �c and
�b are given in Table XIII.

Another ingredient that is useful for matrix elements
[3–5] is the additive renormalization of the bare-quark
mass or, equivalently, �crit. The improvement and match-
ing of the operators needed to compute these matrix ele-
ments depends mildly on �crit via m0a [18]. Our final
results for �crit are given in Table XVII.

The key ingredient needed to determine �c and �b is a
computation of the pseudoscalar and vector heavy-strange
meson masses. These can be combined to yield the hyper-
fine splitting forDs and Bs mesons. Our final results for the
hyperfine splittings are given in Eqs. (6.9) and (6.10). Both
are in good agreement with the corresponding PDG aver-
ages. These results bolster confidence in the tuning of �c

and �b, as well as the choice cB ¼ u�3
0 . Further tests of

these choices come from related calculations of the quark-
onium spectrum [8]. With detailed attention given to the
connection between action parameters and mass splittings,
those results are found to be consistent with experiment
within the expected uncertainties.

Improved determinations of �c, �b, and �crit for the
medium-coarse, coarse, and fine ensembles are underway
with higher statistics, as well as calculations on the new
superfine (a � 0:06 fm), and ultrafine (a � 0:045 fm)

lattices. The increased statistics will also allow us to use
higher momentum data and fit to the Oðp4Þ terms in the
dispersion relation. Refinements in the determination and
use of r1=a are allowing for a better understanding of sea-
quark effects which will be needed as the statistical error
on aM2 decreases. We are also investigating the use of
twisted boundary conditions [51] which will allow us to
obtain data points at lower momenta.
As uncertainties in M2 and M1 decrease, there will be a

need for a better understanding of the chiral behavior of these
masses. One-loop, Oð�=mQÞ chiral perturbation theory re-

sults exist for continuum QCD [47]. The extension to stag-
gered chiral perturbation theory should be straightforward,
and would allow us to extrapolate the light-valence mass to
the physical up/down quark mass and determine the hyper-
fine splittings of the B� and D� mesons. In this paper, we
have included the partially quenched expression for the
hyperfine splitting in Appendix D, since it is useful in esti-
mating uncertainties from the unphysical sea-quark masses.
In addition, tuned values of �c, �b, and �crit combined

with one-loop (lattice) perturbation theory can yield deter-
minations of the pole masses m1 and m2 for both charmed
and bottom quarks,5 which can be converted to the

potential-subtracted, MS, and other schemes [6]. Quark
masses combined with staggered chiral perturbation theory
for the B� and D� mesons, can yield ab initio calculations
of HQET matrix elements [22,52], which are used to
calculate the Cabibbo-Kobayashi-Maskawa matrix ele-
ment jVcbj via inclusive decay measurements. Finally,
improved determinations of the oscillating-state energy
Ep could make determinations of the experimentally ac-
cessible masses of the positive parity states,D�

s0ð2317Þ and
Ds1ð2460Þ [53] a viable option [54].
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APPENDIX A: DISCRETIZATION ERROR
IN THE KINETIC MESON MASS

In this appendix, we present a semiquantitative estima-
tion of the discretization error in the kinetic mass of heavy-
light hadrons. We use a formalism that applies when both
quarks are nonrelativistic, even though this approximation
is not good for the light quark in a heavy-light meson.
A posteriori, we examine two ways to re-interpret the
resulting formula for a relativistic light quark. Both esti-
mates are numerically the same, so we proceed to use the
formula in Sec. VB.

In what follows, the generalized masses m1, m2, m4 and
the coefficient w4 are used to describe the discretization
errors. Expressions for them when using the Fermilab
action are in Ref. [14] or [23] and are given at the end of
this appendix for convenience. We assume that the light
quark (s) has a mass in lattice unitsmsa � 1 and makes no
significant contribution to the discretization error.

The bound state’s kinetic mass can be read off from its
kinetic energy (by definition). It will have a kinematic
contribution, from the constituents’ kinetic energy, and a
dynamical contribution, from the interaction that binds the
constituents. We consider each in turn.

1. Contributions from constituents’ kinetic energy

The hadron of interest is a heavy-strange meson, a bound
state of a heavy quark Q (momentum Q) and a strange
antiquark s (momentum s). The nonrelativistic kinetic
energy is

T ¼ m1Q þ Q2

2m2Q

� ðQ2Þ2
8m3

4Q

� 1

6
w4Qa

3
X
i

Q4
i þm1s

þ s2

2m2s

� ðs2Þ2
8m3

4s

� 1

6
w4sa

3
X
i

s4i : (A1)

The binding energy is communicated to the bound-state
kinetic mass via the terms quartic in the momenta and via
corrections to the potential, given below. In general, the
lattice breaks relativistic invariance, so m1 � m2 � m4,
w4 � 0. Rewriting the kinetic energy in center-of-mass
coordinates

Q ¼ m2Q

m2Q þm2s

P þ p; (A2)

s ¼ m2s

m2Q þm2s

P � p; (A3)

P ¼ Qþ s; (A4)

p ¼ m2sQ�m2Qs

m2Q þm2s

; (A5)

one finds

T ¼ m1Q þm1s þ P2

2ðm2Q þm2sÞ þ
p2

2�2

� P2p2 þ 2ðP � pÞ2
4ðm2Q þm2sÞ2

�m2
2Q

m3
4Q

þm2
2s

m3
4s

�

� a3
X
i

P2
i p

2
i

ðm2Q þm2sÞ2
ðw4Qm

2
2Q þ w4sm

2
2sÞ þ � � � ;

(A6)

1

�2

¼ 1

m2Q

þ 1

m2s

: (A7)

The only quartic terms shown are those quadratic in P; the
omitted terms are not smaller; they just do not contribute to
the bound state’s kinetic energy. The objective is to collect
all terms quadratic in P, because their overall coefficient
will yield the bound state’s kinetic mass.

B. Contribution from the interaction: Breit equation

To obtain the two-particle system’s potential energy, one
has to work out the scattering amplitude from one-gluon
exchange, obtaining an expression called the Breit equa-
tion [46,55].
In momentum space, for the color-singlet channel

VðKÞ ¼ �CFg
2D��ðKÞN QðQþ KÞ �uð�0;Qþ KÞ

��
�
QðQþ K;QÞuð�;QÞN QðQÞ

�N sðsÞ �vð�; sÞ��
s ðs; s� KÞvð�0; s�KÞ

�N sðs�KÞ; (A8)

where D�� is the (lattice) gluon propagator, �
�
q is the

lattice vertex function (for q ¼ Q, s), and N q is an

external-line factor needed with the normalization condi-
tions on spinors employed here [14,23]. (In continuum

field theory, N ¼ ffiffiffiffiffiffiffiffiffiffi
m=E

p
.)

To the accuracy needed here, the gluon propagator can
be replaced with the continuum propagator. The heavy-
quark line is

J4Q ¼ N QðQþ KÞ �uð�0;Qþ KÞ
��4

QðQþ K;QÞuð�;QÞN QðQÞ

¼ �uð�0; 0Þ
�
1� K2 � 2i � ðK�QÞ

8m2
EQ

þ � � �
�
uð�; 0Þ;

(A9)
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JQ ¼ N QðQþKÞ �uð�0;Qþ KÞ
��QðQþ K;QÞuð�;QÞN QðQÞ

¼ �i �uð�0; 0Þ
�
Qþ 1

2K

m2Q

þ i�K

2mBQ

þ � � �
�
uð�; 0Þ; (A10)

and, to the extent that the strange antiquark is nonrelativ-
istic, one has a similar expression for the antiquark line
J�s ¼ N sðsÞ �vð�; sÞ��

s ðs; s� KÞvð�0; s�KÞN sðs�KÞ.
In the Coulomb gauge,

D44ðKÞ ¼ 1

K2
; DijðKÞ ¼ 1

K2

�
�ij � KiKj

K2

�
; (A11)

and the other components vanish. Thus, noting that K4 ¼
i½ðQþKÞ2 �Q2�=2mQ is subleading,

VðKÞ ¼ �CFg
2

�
1

K2
�

�
1

8m2
EQ

þ 1

8m2
Es

�

� 1

m2Qm2s

�
Q � s�Q � KK � s

K2

�
1

K2

�

þ spin-dependent terms: (A12)

Let us discuss each part of the bracket in turn. The leading
term yields, after Fourier transforming to position space,
the 1=r potential. The second yields a contact term pro-
portional to �ðrÞ: it is a relativistic correction to the bound
state’s rest mass, so it is of no further interest here.
Similarly, the spin-dependent terms do not contribute to
the bound state’s kinetic energy, so they are not written out.

The remaining exhibited contributions do contribute to the
bound state’s kinetic energy, when Q and s are eliminated
in favor of P and p.
Next we Fourier transform from K to r using

Z d3K

ð2
Þ3
eir�K

K2
¼ 1

4
r
; (A13)

Z d3K

ð2
Þ3
KiKje

ir�K

ðK2Þ2 ¼ 1

2
ð�ij þ rirjÞ

Z d3K

ð2
Þ3
eir�K

K2
:

(A14)

Following with the substitution of P and p for Q and s this
yields

Vðr;P;pÞ¼�CF�s

r

�
1� P2

2ðm2Qþm2sÞ2
�

�rirj

CF�s

r

PiPj

2ðm2Qþm2sÞ2
þ��� ; (A15)

where the omitted terms do not influence the bound state’s
kinetic energy.
Note that K changes p but not P, so r is conjugate to p.

To take expectation values, we use the virial theorem

hrirjVðrÞi ¼
hpipji
�2

; (A16)

so the total energy of the bound state, EðPÞ ¼ hT þ Vi, is

EðPÞ¼m1Qþm1sþhp2i
2�2

�
�
CF�s

r

�
þ P2

2ðm2Qþm2sÞ
�
1� hp2i

2�2ðm2Qþm2sÞþ
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CF�s
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2ðm2Qþm2sÞ2
hp2i
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2Q

m3
4Q

þm2
2s

m3
4s

��
þ PiPj

ðm2Qþm2sÞ2
hpipji
2�2
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1��2

�m2
2Q

m3
4Q

þm2
2s

m3
4s

��

�a3
X
i

P2
i hp2

i i
ðm2Qþm2sÞ2

ðw4Qm
2
2Qþw4sm

2
2sÞþ��� : (A17)

The first four terms of Eq. (A17) show the binding energy
adding to the quarks’ rest masses to form the bound state’s
rest mass,

M1 ¼ m1Q þm1s þ hp2i
2�2

�
�
CF�s

r

�
: (A18)

The fifth term in Eq. (A17) shows the same binding energy
modifying the kinetic energy. The remaining terms are
discretization errors. In general they are a bit messy, but
they simplify for the S-wave states we use to tune �. Then
hpipji ¼ 1

3�ijhp2i, whence

EðPÞ ¼ M1 þ P2

2M2

þ � � � ; (A19)

where

M2 ¼ m2Q þm2s þ hp2i
2�2

�
�
CF�s

r

�

þ 5

3

hp2i
2�2

�
�2

�m2
2Q

m3
4Q

þm2
2s

m3
4s

�
� 1

�

þ 4

3
a3

hp2i
2�2

�2ðw4Qm
2
2Q þ w4sm

2
2sÞ þ � � � : (A20)

The last two lines exhibit the discretization errors, which
would vanish if m4 ¼ m2, w4 ¼ 0.
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The error can be rewritten as

�M2 ¼ 1

3

hp2i
2�2

�
5

�
�2

�m2
2Q

m3
4Q

þm2
2s

m3
4s

�
� 1

�

þ 4a�2½w4Qðm2QaÞ2 þ w4sðm2saÞ2�
	
; (A21)

which is equivalent to Eq. (14) of Ref. [46]. Note that the
error ends up being proportional to the internal kinetic
energy of the bound state, hp2i=2�2.

3. Relativistic light degrees of freedom

For asqtad light quarks, the discretization errors are
Oð�sm

2
sa

2Þ and Oðm4
sa

4Þ. So, for a semiquantitative esti-
mate of the discretization error, it should be safe to assume
m4s ¼ m2s ¼ m1s ¼ ms, a3w4s ¼ 0. Equation (A21) is
then

�M2 ¼ 1

3m2Q

hp2i
2�2

�2

�
5

�m3
2Q

m3
4Q

� 1

�
þ 4w4Qðm2QaÞ3

�
:

(A22)

To use this formula we need a value for hp2i, and we
consider two possibilities. The first is to replace hp2i
with ��2. The reduced mass �2 then cancels, yielding a
sensible limit even when ms ! 0. The second is to replace
the nonrelativistic kinetic energy hp2i=2�2 with a relativ-

istic version, namely ��. If we take a constituent quark mass

ms ¼ 1
2
��, then this discretization-error estimate equals

that of the first approach to Oðms=mQÞ.

4. The generalized masses and w4

General tree-level expressions for the quark masses and
w4 were originally given in Ref. [14] and succinctly reca-
pitulated in Ref. [23]. For convenience we give them here
with parameters � ¼ 1 ¼ rs as in our simulations

m0a ¼ 1

u0

�
1

2�
� 1

2�crit

�
; (A23)

m1a ¼ lnð1þm0aÞ; (A24)

1

m2a
¼ 2

m0að2þm0aÞ þ
1

1þm0a
; (A25)

1

mBa
¼ 2

m0að2þm0aÞ þ
cB

1þm0a
; (A26)

1

4m2
Ea

2 ¼ 1

½m0að2þm0aÞ�2
þ cE

m0að2þm0aÞ ; (A27)

1

m3
4a

3 ¼ 8

½m0að2þm0aÞ�3
þ 4þ 8ð1þm0aÞ

½m0að2þm0aÞ�2

þ 1

ð1þm0aÞ2
; (A28)

w4 ¼ 2

m0að2þm0aÞ þ
1

4ð1þm0aÞ : (A29)

These expressions and Eq. (A22) are used to obtain
Table IX.

APPENDIX B: TABLES OF THE KINETIC MASS

In this appendix, we tabulate values of the pseudoscalar,
vector, and spin-averaged kinetic mass, aM2; aM

�
2, and

�M2, respectively. Values are given for all combinations of
� and am0

q on the ensembles used for tuning �. �2=dof and

the p value, one minus the �2 cumulative distribution [45],
from the dispersion relation fits are also given.

APPENDIX C: TABLES OF M1 ¼ Eð0ÞAND THE
HYPERFINE SPLITTING

In this appendix, we tabulate the hyperfine splitting a�1

and r1�1 discussed in Sec. VIB.

TABLE XVIII. The kinetic meson mass for bottom- and charm-type mesons on the (0.0062, 0.031) fine ensemble from fits to
E2ðpÞ � E2ð0Þ using jnj 
 ffiffiffi

3
p

. Fits are done to obtain aM2 and aM�
2 and the results are then spin averaged. Uncertainties are the

average 68% bootstrap error. �2=dof with the p value in parentheses is also given. The p value is one minus the �2 cumulative
distribution [45].

�2=dof (p)

� aM2 aM�
2 a �M2 aM2 aM�

2

am0
q ¼ 0:0272 0.090 2.30(17) 2.31(25) 2.31(21) 0.21 (0.81) 0.24 (0.79)

0.0923 2.19(15) 2.22(22) 2.21(19) 0.22 (0.80) 0.35 (0.71)

0.093 2.16(14) 2.19(22) 2.18(18) 0.22 (0.80) 0.37 (0.69)

0.1256 0.860(19) 0.936(42) 0.917(32) 0.09 (0.92) 0.14 (0.87)

0.127 0.819(15) 0.912(39) 0.889(30) 0.36 (0.70) 0.00 (1.0)

am0
q ¼ 0:031 0.0923 2.22(14) 2.22(21) 2.22(18) 0.18 (0.84) 0.31 (0.73)

0.1256 0.871(18) 0.947(38) 0.928(30) 0.14 (0.87) 0.16 (0.85)

0.127 0.828(15) 0.918(37) 0.895(29) 0.40 (0.67) 0.00 (1.0)
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TABLE XIX. Same as Table XVIII but for mesons on the (0.007, 0.050) coarse ensemble.

�2=dof (p)

� aM2 aM�
2 a �M aM2 aM�

2

am0
q ¼ 0:03 0.074 3.78(49) 3.64(54) 3.67(50) 1.12 (0.33) 0.17 (0.84)

0.086 2.93(21) 3.03(33) 3.01(29) 0.28 (0.76) 0.21 (0.81)

0.093 2.50(14) 2.66(24) 2.62(21) 0.05 (0.95) 0.11 (0.90)

0.119 1.263(16) 1.402(43) 1.368(34) 0.84 (0.43) 0.20 (0.82)

0.122 1.132(17) 1.270(46) 1.236(37) 0.35 (0.70) 0.34 (0.71)

0.124 1.038(16) 1.161(43) 1.130(33) 0.28 (0.76) 0.52 (0.60)

am0
q ¼ 0:0415 0.074 3.66(35) 3.75(53) 3.73(48) 0.26 (0.77) 0.23 (0.79)

0.086 2.99(19) 3.09(28) 3.06(25) 0.46 (0.63) 0.48 (0.62)

0.093 2.57(13) 2.75(25) 2.70(21) 0.14 (0.87) 0.31 (0.73)

0.119 1.292(15) 1.456(41) 1.415(33) 0.88 (0.41) 0.38 (0.69)

0.122 1.157(17) 1.310(44) 1.272(36) 0.19 (0.83) 0.24 (0.79)

0.124 1.065(15) 1.200(43) 1.166(34) 0.15 (0.86) 0.47 (0.63)

TABLE XX. Same as Table XVIII but for mesons on the (0.0097, 0.0484) medium-coarse ensemble.

�2=dof (p)

� aM2 aM�
2 a �M aM2 aM�

2

am0
q ¼ 0:0484 0.070 4.54(32) 4.53(45) 4.53(41) 0.55 (0.58) 0.78 (0.46)

0.080 3.79(19) 3.77(27) 3.78(24) 0.54 (0.58) 1.19 (0.31)

0.115 1.747(25) 1.825(47) 1.805(37) 1.32 (0.27) 0.36 (0.70)

0.125 1.304(12) 1.415(32) 1.387(26) 1.23 (0.29) 0.05 (0.95)

am0
q ¼ 0:0387 0.070 4.47(35) 4.44(50) 4.44(46) 0.47 (0.63) 0.72 (0.49)

0.080 3.73(21) 3.70(31) 3.71(28) 0.53 (0.59) 1.07 (0.34)

0.115 1.725(28) 1.804(58) 1.784(47) 1.06 (0.43) 0.04 (0.96)

0.125 1.282(13) 1.388(37) 1.361(29) 0.89 (0.41) 0.07 (0.93)

TABLE XXI. Fine-ensemble values of the rest mass M1 ¼ Eð0Þ and hyperfine splitting �1. am
0
q ¼ 0:0272 and 0.031. Uncertainties

are the average 68% bootstrap error.

� Ensemble aM1 aM�
1 a�1

am0
q ¼ 0:0272 0.090 (0.0062, 0.031) 1.7387(13) 1.7546(19) 0.0158(15)

0.0923 (0.0031, 0.031) 1.6877(21) 1.7054(25) 0.0177(19)

0.0923 (0.0062, 0.031) 1.6870(13) 1.7037(20) 0.0167(16)

0.0923 (0.0124, 0.031) 1.6835(16) 1.7024(19) 0.0188(14)

0.1256 (0.0062, 0.031) 0.8408(8) 0.8968(16) 0.0561(15)

0.127 (0.0031 0.031) 0.7944(9) 0.8534(19) 0.0590(19)

0.127 (0.0062, 0.031) 0.7946(7) 0.8544(15) 0.0599(13)

0.127 (0.0124, 0.031) 0.7901(7) 0.8514(11) 0.0613(12)

am0
q ¼ 0:031 0.090 (0.0062, 0.031) 1.7441(13) 1.7601(17) 0.0159(14)

0.0923 (0.0062, 0.031) 1.6926(12) 1.7093(18) 0.0167(14)

0.1256 (0.0062, 0.031) 0.8470(8) 0.9030(14) 0.0560(13)

0.127 (0.0062, 0.031) 0.8009(7) 0.8606(14) 0.0597(12)
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1. The hyperfine splitting in lattice units a�1

In this subsection, we tabulate values of a�1 relevant to
the discussion in Sec. VI B of the uncertainty in the hyper-
fine splitting due to statistics, � tuning, and the light-
valence mass.

2. The hyperfine splitting in physical units r1�1

In this subsection, we tabulate values of r1�1 relevant to
the discussion in Sec. VIB of the dependence of the
hyperfine splitting on the sea-quark masses.

APPENDIX D: PARTIALLY QUENCHED
CHIRAL PERTURBATION THEORY

FOR THE HEAVY-LIGHT HYPERFINE
SPLITTING

For full (unquenched) QCD, Jenkins [47] has calculated
the hyperfine splitting at one-loop in heavy-meson chiral
perturbation theory. It is not difficult to take her result
(Eq. (A.10) of Ref. [47])and extend it to partially quenched
QCD. The further step of including staggered taste-
violations (i.e., doing staggered chiral perturbation theory)
would also be fairly straightforward, but we do not take it
here because the continuum partially quenched form is

TABLE XXII. Same as Table XXI but for the coarse ensembles with am0
q ¼ 0:0415 and 0.03.

� Ensemble aM1 aM�
1 a�1

am0
q ¼ 0:0415 0.074 (0.007, 0.050) 2.2394(22) 2.2618(25) 0.0224(09)

0.086 (0.005, 0.050) 1.9662(17) 1.9941(27) 0.0279(18)

0.086 (0.007, 0.050) 1.9644(17) 1.9943(21) 0.0299(11)

0.086 (0.010, 0.050) 1.9676(16) 1.9978(21) 0.0301(12)

0.086 (0.020, 0.050) 1.9584(16) 1.9891(21) 0.0307(14)

0.122 (0.005, 0.050) 1.0529(10) 1.1399(22) 0.0870(17)

0.122 (0.007, 0.050) 1.0520(7) 1.1393(17) 0.0873(15)

0.122 (0.010, 0.050) 1.0549(10) 1.1414(26) 0.0865(22)

0.122 (0.020, 0.050) 1.0446(9) 1.1339(16) 0.0894(16)

0.124 (0.007, 0.050) 0.9871(7) 1.0819(17) 0.0948(15)

am0
q ¼ 0:030 0.074 (0.007, 0.050) 2.2241(26) 2.2466(29) 0.0225(11)

0.086 (0.007, 0.050) 1.9488(21) 1.9787(25) 0.0299(14)

0.122 (0.007, 0.050) 1.0339(08) 1.1220(20) 0.0881(17)

TABLE XXIII. Same as Table XXI but for medium-coarse ensembles with am0
q ¼ 0:0484 and 0.0387.

� Ensemble aM1 aM�
1 a�1

am0
q ¼ 0:0484 0.076 (0.0097, 0.0484) 2.3192(27) 2.3472(36) 0.0280(17)

0.076 (0.0194, 0.0484) 2.3153(30) 2.3424(47) 0.0270(26)

0.076 (0.0290, 0.0484) 2.3137(23) 2.3445(21) 0.0308(16)

0.080 (0.0097, 0.0484) 2.2298(24) 2.2606(34) 0.0308(17)

0.122 (0.0097, 0.0484) 1.2427(8) 1.3390(21) 0.0963(19)

0.122 (0.0194, 0.0484) 1.2397(8) 1.3400(17) 0.1004(14)

0.122 (0.0290, 0.0484) 1.2364(7) 1.3402(17) 0.1038(14)

0.125 (0.0097, 0.0484) 1.1565(8) 1.2634(21) 0.1069(20)

am0
q ¼ 0:0387 0.076 (0.0097, 0.0484) 2.3060(31) 2.3341(40) 0.0281(19)

0.122 (0.0097, 0.0484) 1.2271(9) 1.3237(25) 0.0966(24)

TABLE XXIV. Fine-ensemble values of the hyperfine splitting
�1 in units of r1. am

0
q ¼ 0:0272. Uncertainties are the average

68% bootstrap error.

Ensemble r1�1

� ¼ 0:0923 (0.0031, 0.031) 0.0653(69)

(0.0062, 0.031) 0.0618(58)

(0.0124, 0.031) 0.0700(52)

� ¼ 0:127 (0.0031 0.031) 0.2178(69)

(0.0062, 0.031) 0.2217(48)

(0.0124, 0.031) 0.2281(43)
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sufficient for estimating the small systematic effect due to
the mistuning of sea-quark masses. Unlike Jenkins, we
neglect electromagnetic and isospin-violating effects.

At the quark-flow level, the relevant diagrams are the
self-energy diagrams shown in Fig. 5(a) [left] of Ref. [56]
(the ‘‘connected diagram’’) and in Figs. 5(b), (c) [left] of
Ref. [56] (the ‘‘disconnected diagram’’).6 One simply
needs to determine how much of Jenkins’s result comes
from each of these two diagrams. This is accomplished by
noting that, when the light-valence quark is a u (a ¼ 1 in
Jenkins’s notation), an internal kaon only appears in the
connected diagram, when the quark in the virtual loop is an
s. This fixes the normalization of the connected diagram.
Using the methods described in Refs. [56–58] (but drop-
ping the taste violations and indeed the taste degree
of freedom itself), the disconnected diagram is easily

calculated. Its normalization can then be fixed so that it
supplies the remainder of the a ¼ 1 result in Ref. [47].
There are ample checks of this reasoning. First, the same

normalizations must apply for any choice of the valence
mass. The  contributes in each case only through the
disconnected diagram, while the pion contributions come
from both connected and disconnected diagrams for va-
lence u or d (a ¼ 1, 2), and must be absent for valence s
(a ¼ 3). Finally the contribution from the unphysical s�s
state, which appears in each diagram for a ¼ 3, should
cancel.
It is then immediate to write down the partially

quenched version. Let the light-valence quark be x, with
mass mx, and let the sea quarks be u, d, s with masses
mu ¼ md ¼ ml and ms. With the light-meson decay con-
stant f normalized so that f � f
 � 130 MeV, the hyper-
fine splitting M�

x �Mx is given by

M�
x �Mx ¼ �� �g2


8
2f2
�log þ 2�ð�Þð2ml þmsÞ

þ 2�ðaÞmx; (D1)

where � is the splitting in the (three-flavor) chiral limit,

and �ð�Þ and �ðaÞ are low-energy constants that start at
order 1=mQ in the heavy-quark expansion. The nonanalytic

chiral logarithms �log are

�log ¼
X

F¼u;d;s

‘ðM2
xFÞ �

1

3
R½2;2�
X ðfmg; f�gÞ~‘ðM2

XÞ

� 1

3

X
j¼X;

D½2;2�
j;X ðfmg; f�gÞ‘ðM2

j Þ: (D2)

Here MX is the mass of the valence x �x meson, and MxF is
the mass of the mixed valence-sea x �F meson. The residue

functions R½n;k�
j and D½n;k�

j;i , as well as the chiral logarithm

functions ‘ðm2Þ and ~‘ðm2Þ, are defined in Refs. [57,58].
The term with the sum over F comes from the connected
diagram, while those with the residue functions come from
the disconnected diagram, which has a double pole at M2

X

in the partially quenched case. The denominator (fmg) and
numerator (f�g) mass sets are

fmg ¼ fMX;Mg; f�g ¼ fMU;MSg (D3)

with MU and MS the masses of the u �u and s�s mesons,
respectively.

TABLE XXVI. Same as Table XXIV but for medium-coarse-
ensembles with am0

q ¼ 0:0484.

Ensemble r1�1

� ¼ 0:076 (0.0097, 0.0484) 0.0616(37)

(0.0194, 0.0484) 0.0603(57)

(0.0290, 0.0484) 0.0699(37)

� ¼ 0:122 (0.0097, 0.0484) 0.2117(41)

(0.0194, 0.0484) 0.2244(30)

(0.0290, 0.0484) 0.2357(39)

TABLE XXV. Same as Table XXIV but for the coarse ensem-
bles with am0

q ¼ 0:0415.

Ensemble r1�1

� ¼ 0:086 (0.005, 0.050) 0.0738(46)

(0.007, 0.050) 0.0788(29)

(0.010, 0.050) 0.0788(32)

(0.020, 0.050) 0.0814(36)

� ¼ 0:122 (0.005, 0.050) 0.2301(44)

(0.007, 0.050) 0.2300(39)

(0.010, 0.050) 0.2265(58)

(0.020, 0.050) 0.2370(43)

6One should ignore the solid square in each of the figures from
Ref. [56] because it represents a current insertion, not relevant
here.
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