
Visualization of semileptonic form factors from lattice QCD
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Comparisons of lattice-QCD calculations of semileptonic form factors with experimental measure-

ments often display two sets of points, one each for lattice QCD and experiment. Here we propose to

display the output of a lattice-QCD analysis as a curve and error band. This is justified, because lattice-

QCD results rely in part on fitting, both for the chiral extrapolation and to extend lattice-QCD data over

the full physically allowed kinematic domain. To display an error band, correlations in the fit parameters

must be taken into account. For the statistical error, the correlation comes from the fit. To illustrate how to

address correlations in the systematic errors, we use the Bećirević-Kaidalov parametrization of the D !
�l� and D ! Kl� form factors, and an analyticity-based fit for the B ! �l� form factor fþ.

DOI: 10.1103/PhysRevD.80.034026 PACS numbers: 13.20.Fc, 12.38.Gc, 13.20.He

The past several years have witnessed considerable im-
provement in our understanding of semileptonic decays of
D and B mesons. Measurements have advanced in accu-
racy from 6%–20% on the normalization [1–3] and �10%
on the shape [4] to�1% on both [5]. Meanwhile, ab initio
calculations in QCDwith lattice gauge theory have become
realistic [6–9], now incorporating the effects of sea quarks
that were omitted in earlier work [10–14]. In this article,
we discuss how to present both together, so that the agree-
ment (or, in principle, lack thereof) is easy to assess.

We focus on reactions mediated by electroweak vector
currents, leading to pseudoscalar mesons, � or K, in the
final state. At the quark level, a heavy quark h decays into a
daughter quark d (not necessarily the down quark), with a
spectator antiquark �q. Writing the decay H ! Pl�, the
form factors are defined by

hPjV�jHi ¼ fþðq2ÞðpH þ pP � �Þ� þ f0ðq2Þ��; (1)

where q ¼ pH � pP is the 4-momentum of the lepton
system, and �� ¼ ðpH þ pPÞ � qq�=q2 ¼ ðm2

H �
m2

PÞq�=q2. Equation (1) is general, applying to K ! �l�
as well as to D and B decays. For lattice QCD, it is more
convenient to express the transition matrix element as

hPjV�jHi ¼ ffiffiffiffiffiffiffiffiffiffi
2mH

p ½v�fkðEÞ þ p
�
?f?ðEÞ�; (2)

where v ¼ pH=mH, and p? ¼ pP � Ev and E ¼ v � pP

denote the 3-momentum and energy of the final-state me-
son in the rest frame of the initial state. The energy E is
related to q2 via

q2 ¼ m2
H þm2

P � 2mHE: (3)

Neglecting the lepton mass, 0 � q2 � q2max ¼ ðmH �
mPÞ2 is kinematically allowed in the semileptonic decay.
The form factors fþðq2Þ and f0ðq2Þ are related to fkðEÞ

and f?ðEÞ by
fþðq2Þ ¼ ð2mHÞ�1=2½fkðEÞ þ ðmH � EÞf?ðEÞ�; (4)

f0ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2mH

p
m2

H �m2
P

½ðmH � EÞfkðEÞ � p2
?f?ðEÞ�; (5)

with Eq. (3) understood. Equations (4) and (5) imply
fþð0Þ ¼ f0ð0Þ, as required in Eq. (1).
Two aspects of lattice-QCD calculations are important

here. First (as in all lattice-QCD calculations), it is
computationally demanding to have a spectator quark
with mass as small as those of the up and down quarks;
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for P ¼ � the same applies to the daughter quark. In recent
unquenched calculations, the mass of the �qq pseudoscalar
P �qq lies in the range 0:1m2

K & m2
P �qq

& m2
K. Second (of

special importance in semileptonic decays), the calcula-
tions take place in a finite spatial volume, so the 3-
momentum takes discrete values. In typical cases the box
size L � 2:5 fm, so the smallest nonzero momentum
pð1;0;0Þ ¼ 2�ð1; 0; 0Þ=L satisfies jpð1;0;0Þj � 500 MeV.

After generating numerical data at several values of
ðE;m2

P �qq
Þ, the next step for lattice-QCD calculations is to

carry out a chiral extrapolation,m2
P �qq

! m2
�, of the data for

f? and fk [15,16]. The chiral extrapolation must reflect the

fact that the form factors are analytic in E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

P

q
,

not p [17]. Note also that f? and fþ can be computed only
with p � 0, hence E>mP or, equivalently, q2 < q2max.
The statistical and discretization uncertainties in
fþðq2; m2

P �qq
Þ start out smallest at q2ð1;0;0Þ, corresponding to

pð1;0;0Þ. A sensible chiral extrapolation will propagate this

feature to fþðq2; m2
�Þ. Similarly, the statistical and discre-

tization uncertainties in f0ðq2; m2
�Þ are smallest near q2max.

When jpja becomes too large, discretization effects
grow out of control. Therefore, the kinematic domain of
lattice-QCD calculations is limited to, these days, jpj &
1 GeV, with a corresponding upper limit on E and lower
limit on q2. To extend the form factor over the full physical
kinematic domain, a parametrization of the q2 dependence
is needed.

One choice is the Bećirević-Kaidalov (BK) ansatz [18]

fþðq2Þ ¼ F

ð1� ~q2Þð1� �~q2Þ ; (6)

f0ðq2Þ ¼ F

1� ~q2=�
; (7)

where ~q2 ¼ q2=m2
H� (H� is the vector meson of flavor h �d),

and F, �, and � are free parameters to be fitted. A key
feature of Eq. (6) is the built-in pole at q2 ¼ m2

H� , or E ¼
�ðm2

H� �m2
H �m2

PÞ=2mH < 0, an indisputable feature of

the physical fþ. Further singularities at higher negative
energy are modeled by the BK parameters � and �. A
similar possibility is the Ball-Zwicky (BZ) ansatz [8,19],
which has one more parameter for fþ than BK. A short-
coming of these parametrizations is that comparisons of
lattice-QCD and experimental slope parameters can be
misleading [20,21], because lattice-QCD slopes are deter-
mined near q2 ¼ q2max, whereas experimental slopes are
determined near q2 ¼ 0.

Another approach based on analyticity and unitarity is to
write the form factors as

fþðq2Þ ¼ 1

ð1� ~q2Þ�þðq2Þ
XN
k¼0

akz
k; (8)

f0ðq2Þ ¼ 1

�0ðq2Þ
XN
k¼0

bkz
k; (9)

where �þ;0 are arbitrary, but suitable, functions, and the

series coefficients are fit parameters. The variable

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2=tþ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t0=tþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2=tþ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t0=tþ

p ; (10)

where tþ ¼ ðmH þmPÞ2 and t0 can be chosen to make jzj
small for all kinematically allowed q2. Like BK and BZ,
Eq. (8) builds the H� pole into fþ, but this approach is
model independent because unitarity [17,22,23] and
heavy-quark physics [21] impose bounds on

P
kjakj2,P

kjbkj2, and because kinematics set jzj< 1. Con-
sequently, the series can be truncated safely, once addi-
tional terms are negligible compared to other uncertainties
in the analysis.
In all approaches the output of an analysis of lattice-

QCD form factors is a fit, usually a two-stage fit of chiral
extrapolation followed by q2 parametrization. Clearly, the
final fit describes a curve, and the error matrix of the fit
parameters describes an error band. Nevertheless, lattice-
QCD results usually have been plotted as a set of points
with error bars at fiducial values of q2 (or E). These points
evoke the underlying discrete nature of the 3-momentum p
but, in general, the chosen values of q2 (or E) have nothing
to do with the original discrete values of p. A plot with a
curve plus error band exhibits the same information, while
giving a visually superior sense of the correlations between
points on the curve.
The experimental measurements of fþðq2Þ come from

counting events in bins of q2 and removing coupling and
kinematic factors. The analysis inevitably entails some
fitting, to correct for acceptance, etc., but the postfit bins
of q2 faithfully mirror the input to such fits.
If one would like to compare the calculations with the

measurements, it is appealing to represent one as a curve
with error band, and the other as points with error bars.
Bearing the foregoing remarks in mind, it seems natural to
draw the curve for lattice-QCD calculations. A few years
ago, we prepared illustrative plots for D ! Kl� with the
Fermilab-MILC [6,7] lattice-QCD calculations and
FOCUS [4] and Belle [24] measurements. The intent was
pedagogical, and we showed the plots at seminars and
conferences [25].
Unfortunately, the error band in that effort was impres-

sionistic, not rigorous. With the prospect of yet-more-
precise results based on CLEO-c’s full accumulation of
818 pb�1 [5], we now present a version that treats the error
band as rigorously as possible. We also prepare plots for
D ! �l� and B ! �l�.
As before we shall base the plots for D decays on

Ref. [6]. The final result of this analysis consists of the
BK parameters ðF;�;�Þ and the 3� 3 error matrix. The
full statistical error matrix is contained in a detailed, un-
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published description of a BK-based analysis of B ! �l�
form factors [26]. The best fit, statistical errors, and sys-
tematic errors are tabulated in Table I. The statistical

correlation matrices �ij ¼ �2
ij=ð�2

ii�
2
jjÞ1=2 are tabulated

in Table II. The correlations among systematic errors are
discussed below.

Propagating (correlated) fluctuations in F, �, and � to
the form factors, one finds relative squared errors

�2þþ
f2þ

¼ �2
FF

F2
þ 2

�2
F�

F

~q2

1� �~q2
þ �2

��

�
~q2

1� �~q2

�
2
;

(11)

�2
00

f20
¼ �2

FF

F2
� 2

�2
F�

F�

~q2

�� ~q2
þ �2

��

�2

�
~q2

�� ~q2

�
2
: (12)

These errors are plotted as a function of q2 in Fig. 1 as solid
curves.

The relative statistical errors are smallest for q2 such that

�2
F� ¼ �F�2

��~q
2=ð1� �~q2Þ; (13)

�2
F� ¼ F�2

��~q
2=�ð�� ~q2Þ: (14)

It is illustrative to take �2
F� and �2

F� from Tables I and II

and solve Eqs. (13) and (14) for ~q2. We call these values ~q2�
and ~q2� and tabulate them, as well as ~q2ð1;0;0Þ and ~q2max, in

Table III.
As one can see from Fig. 1 and Table III, the statistical

error is smallest between q2ð1;0;0Þ and q
2
max, as expected. One

may view this outcome as a check on the fitting procedures.
One can reverse this strategy to determine the correla-

tion between the systematic errors of F and the slope
parameters. In the error budget of Ref. [6] the largest

systematic effect comes from discretization errors. These
should be smallest around q2ð1;0;0Þ and q2max for fþ and f0,

respectively, because those correspond to the smallest jpj
yielding the respective matrix elements. This yields

�syst
F� ¼ �0:198ðD ! KÞ; �0:329ðD ! �Þ; (15)

�syst
F� ¼ þ0:471ðD ! KÞ; þ0:533ðD ! �Þ; (16)

and the dashed curves in Fig. 1.
It is customary to combine statistical and systematic

uncertainties by adding the two �2 (matrices). Carrying
out this procedure leads to the curves and bands in Fig. 2.
The error bands seem to contradict the conventional wis-
dom that the lattice-QCD uncertainties are smallest near
q2max. This is not entirely the case for the relative error, as
seen in Fig. 1. As q2 increases, the relative errors decrease
until hitting a minimum somewhere between q2ð1;0;0Þ and
q2max, as is reasonable. The form factors rise faster than the
relative errors drop, leading to the increasing absolute error
seen in Fig. 2. These features are not an artifact of the BK

TABLE I. Best-fit values of BK parameters with statistical and
systematic errors, successively, in parentheses [6,7,26].

Decay F � �

D ! Kl� 0.73(3)(7) 0.50(4)(7) 1.31(7)(13)

D ! �l� 0.64(3)(6) 0.44(4)(7) 1.41(6)(7)

TABLE II. Statistical error correlation matrices �ij ¼
�2

ij=ð�2
ii�

2
jjÞ1=2 of the BK parameters [26].

D ! K F � �
F 1.000 �0:597 0.530

� �0:597 1.000 �0:316
� 0.530 �0:316 1.000

D ! � F � �
F 1.000 �0:583 0.535

� �0:583 1.000 �0:312
� 0.535 �0:312 1.000
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FIG. 1 (color). Relative errors vs q2. Solid (dashed) curves
show the fitted statistical (estimated systematic) error for fþ (red
curves) and f0 (blue curves). Vertical lines show q2ð1;0;0Þ and q

2
max.
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parametrization, as we shall see below with the B ! �l�
form factor fþ.

Figure 2 is the first main result of this article. It shows
the form factors fþ and f0 for D ! Kl� and D ! �l�.
The lattice-QCD results are shown as curves (red for fþ,
blue for f0) with two errors bands, one statistical (orange
for fþ, gray for f0), the other systematic and statistical
combined (yellow for fþ, light blue for f0). Experimental
measurements for fþ [24,27–29] are overlaid as points
with error bars. It may require careful scrutiny to see which

experiment is which, but a glance reveals how well the
points and curves agree. The agreement is good for D !
�l� and very good for D ! Kl�.
For the z expansion the propagation of errors is even

simpler. Focusing on fþ, one has from Eq. (8)

�2þþ
f2þ

¼
PN

k;l¼0 �
2
klz

kþl

½PN
k¼0 akz

k�2 ; (17)

where the indices on �2 correspond to those on the series
coefficients. The coefficients and error matrix for the N ¼
3 fit (t0 ¼ 0:65q2max) are tabulated in Table IV.
The z-series fit was carried out after assigning

q2-dependent systematic uncertainties, so Table IV refers

TABLE IV. Best-fit values ak and correlation matrix �kl of the
3-term z expansion of fþ for B ! �l�, with statistical and
systematic errors combined [9].

Fit: 0.0216(27) �0:0378ð191Þ �0:113ð27Þ
� a0 a1 a2
a0 1.000 0.640 0.475

a1 0.640 1.000 0.964

a2 0.474 0.964 1.000

TABLE III. Useful quantities for generating and assessing Figs. 1–3.

Decay H� mH� (MeV) Eð1;0;0Þ (MeV) q2ð1;0;0Þ (GeV
2) q2max (GeV2) ~q2ð1;0;0Þ ~q2max ~q2� ~q2�

D ! Kl� D�
s 2112 704 1.10 1.88 0.25 0.42 0.47 0.38

D ! �l� D� 2008 518 1.57 3.00 0.39 0.74 0.53 0.52

B ! �l� B� 5325 518 22.4 26.4 0.79 0.93 � � � � � �
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FIG. 2 (color). Form factors fþ (and f0) for semileptonic D
decays, from lattice QCD [6,26], expressed as a red (blue) curve
with an orange (gray) statistical error band and a yellow (light
blue) combined error band. Error bands take correlations into
account. Measurements of fþ are from Belle (green diamonds)
[24], BABAR (magenta squares) [27], and CLEO-c (maroon
triangles) [28,29]. The vertical line shows q2max.
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FIG. 3 (color). Form factor fþ for B ! �l� expressed as a
curve (red) from the best fit with a total error band (yellow) from
taking correlations in the fit parameters into account [9], overlaid
with measurements of jVubjfþ=ð3:38� 10�3Þ from BABAR
(magenta squares) [30]. The vertical line shows q2max.
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to the combined statistical and systematic errors of this
analysis.

This information, combined with the outer function �þ
[9], is used to produce Fig. 3, the second main result of this
paper. Now the curve and error band conform with pre-
conceptions, for several reasons. First, q2ð1;0;0Þ is close to

q2max, rather than in the middle of the kinematic range.
Second, the chiral extrapolation in Ref. [9] is less aggres-
sive than that in Ref. [6], leading to a larger but more
realistic error at q2 ¼ 0. The most striking aspect is that
even though the absolute error in fþ is increasing for ~q2 	
0:8, the band remains narrow. The band simply conveys the
point-to-point correlations better.

This paper shows in detail how to compare semileptonic
form factors from lattice QCD and from experiments. For
illustration we use the BK parametrization for D ! Kl�
and D ! �l�, and the z expansion for B ! �l�. Clearly,
the idea is more general. For example, an interesting
prospect relevant to semileptonic form factors is to inject
3-momenta smaller that pð1;0;0Þ using ‘‘twisted’’ boundary

conditions [31–33]. That strategy should improve the ac-
curacy of parameters in the chiral extrapolation and, hence,
the BK, BZ, or z fits. The output of any fit could still be
exhibited as outlined here, although one should bear in
mind that superior visualization of a fitting procedure does
not repair any shortcomings of the fit itself.
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