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Abstract. In this paper we present a project of visualizing topological charge in

Lattice QCD in order to understand its evolution under the Markov Chain Monte

Carlo algorithms and how to maximize its equilibration. Lattice QCD is a very

computationally expensive technology for computing properties of composite particles

from a few fundamental parameters such as quark masses. Our research plays an

important role in validating these computations by showing that the autocorrelation

length is small and it can eventually lead to even more efficient algorithms.

1. Introduction and Motivations

The Standard Model of Particle Physics provides a strikingly successful description of

the structure of the matter down to scales of 10−18m. The basic degrees of freedom

are elementary particles including quarks and leptons which interact with each other

according to strong and electro-weak interactions. Quarks play a special role in this

model because their interacting are mediated by the exchange of gluons; thus, they

create bound states such as the proton, the neutron and the majority of particles that

constitute the richness of structures that we observe in the physical world. The part

of the Standard Model that describes quarks and gluons is called Quantum Chromo

Dynamics (QCD). The ability to perform computations in QCD is of critical importance

in Particle and Nuclear Physics. It enables us to determine fundamental parameters

of the Standard Model from experiments, compare experimental results with model

predictions, and eventually find discrepancies that can shed some light into yet unknown

smaller structures and laws of physics at higher energy. It enables us to calculate the

equation of state, transport coefficients, and other properties of hadronic matter and

the quark gluon plasma explored in relativistic heavy ion collisions at RHIC the LHC.

It also enables us to calculate the spectrum, structure, and interactions of mesons and

baryons from first principles and lies at the heart of explorations at Jefferson Lab, RHIC

spin, and a future electron-ion collider.
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Since quarks are subject to strong interactions, standard perturbative techniques

are inadequate to perform many interesting computations. For computing the spectrum

of the model and computing the lifetime of composite particles, the purely numerical

approach known as Lattice QCD that has been the most productive[2].

Lattice QCD consists of taking a small portion of space (a cube of ∼ 10−15m of

size) for a brief time interval (∼ 10−23secs), discretizing it on a four dimensional lattice,

and simulating numerically the dynamics of QCD inside. The spatial fields do not

evolve over time as in ordinary classical systems. Instead, the fields, that are defined

on the four-dimensional Euclidean space-time, evolve over a fictitious MCMC time (τ).

Lattice QCD computations consist of measuring correlation functions over the possible

four dimensional configurations of the fields, each weighted by a number that encodes the

dynamics of QCD[1]. Quantities like particles masses and lifetimes can be determined

from these correlations.

In practice, the four dimensional configurations are created using Markov Chain

Monte Carlo (MCMC) algorithms. Examples are the Molecular Dynamics algorithm or

the Hybrid Monte Carlo algorithm. Each configuration is generated from the previous

one using a transition in probability that encodes the laws of QCD dynamics.

In this paper, we describe how visualization techniques can be useful to provide

information about these algorithms, about the data that is being generated.

The quark fields can be integrated out and, while they play a critical role in the

inner workings of the algorithms, they are not part of the actual configurations. The

latter only contain gauge degrees of freedom representing gluons, hence they are usually

referred to as gauge configurations. Typical gauge configurations have sizes that range

from 32× 243 to 192× 643 points; which correspond to a size ranging from 256 MBytes

to 15 GBytes each (in single precision). A typical Lattice QCD computation generates

and utilizes about 1000 of these gauge configurations, thus requiring multiple TBytes

of storage. Algorithms are always parallel because of the size of the problem of Lattice

QCD.

A typical problem consists in determining whether this small subset of the infinite

space of all possible gauge configuration is sufficiently representative and whether

the statistical uncertainty determined from the averages can be trusted. From a

physical perspective the gauge configurations can be grouped into equivalence classes

characterized by their topological charge density.

Our goal is to visualize this topological charge density and measure how fast/slow it

evolved under the MCMC for different algorithms and different simulation parameters

(the dynamic quark mass in particular). This would provide us with a proof that

current Lattice QCD computation are adequately sampling the space of all possible

configurations as opposed to getting stuck in one topological sector, and provide a

effective tool for developing algorithms that maximize equilibration of the topological

charge.
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2. Visualization

Typical production gauge configurations appear to be separated by enough MCMC

steps and there is no visible continuity in the topological charge. In order to measure

autocorrelation in the topological charge we generated ad hoc gauge configurations with

small trajectories for two different algorithms and different dynamical quark masses.

• Wilson Two sets of 243
× 32 dynamical Wilson gauge configurations with β = 5.6

and quark masses of m1 = 66MeV and m2 = 33MeV respectively. Each set

consists of 1000 trajectories with a 0.1 molecular dynamics time units, saved every

2 time units (dt = 0.2). To integrate Hamilton’s equations a multi-step 2nd order

symmetric symplectic integrator was used (Omelyan) [3].

• DWF: One set of 243
×64 dynamical gauge configurations generated with Domain

Wall Fermions (two degenerate light ones, mu = 14MeV, and one strange, ms =

74MeV) and Iwasaki gauge action at β = 2.13, saved every 1/6 of a trajectory

(dt = 0.16̄). Further details can be found in [4] and the references therein.

Each gauge configuration consists of a set of SU(3) matrices Ux,y for every pair of

neighbor sites x, y on the lattice. Given a quark field qy, the Ux,y matrix represent the

change in the quark field under parallel transport from y → x, i.e., qy → qx = Ux,yqy.

Therefore Uy,x = UH
x,y.

The topological charge is computed in three steps according to the definition:

• The gauge field was smoothed by n-iterations of a “cooling step”

Ux,y → Ux,y = PSU(3)(αUx,y + (1 − α)Sx,y) (1)

where PSU(3) is a projection operator into SU(3) and Sx,y is the average of all

products of three consecutive links connecting x with y.

• We computed the chromo-electro-magnetic field defined by

Fx,µ,ν =
1

2
Re(Ax,µ,ν − AH

x,µ,ν) (2)

where Ax,µ,ν is the average of the product of four consecutive links in the µ, ν plane

starting and ending at point x.

• We computed the topological charge density, defined by

Qx =
1

32π2

∑

µνρσ

ǫµνρσTr(Fx,µ,νFx,ρ,σ) (3)

In fig. 1 we show three images of iso-surfaces of topological charge density for one

gauge configuration for different numbers of cooling steps (0,10,15). In fig. 2 we show

three images of iso-surfaces of topological charge density for the same number of cooling

steps (20) for different consecutive gauge configurations separated by 6 trajectories.
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3. Autocorrelation and Hurst Exponent

In addition to the visualization of the topological charge density we also computed

the average autocorreleation R(τ) and average Hurst exponent H for each independent

Markov Chain. First we computed the autocorrelation and the Hurst exponent over

the MCMC time (τ) for each lattice point, then we averaged the results over all lattice

points. The Hurst exponent is computed using the standard R/S technique described in

ref. [5]. In fractal geometry, the Hurst exponent is also known as “index of dependence”,

it measures the relative tendency of a time series to either strongly regress to the mean

or cluster in a direction. H is 0.5 for white noise. H is related to the auto-correlation

length via R(τ) ≃ τ 2H−2 and 2−H is known as the “fractal dimension” of the problem.

Our results are summarized in the following table.

Action quark masses H

Wilson 66MeV 0.966

Wilson 33MeV 0.973

DWF 69,17MeV 0.908

The autocorrelation is plotted is fig. 3

Notice how the autocorrelation becomes negative at around 100 MCMC steps.

This may indicates an alternating pattern in the data, but a larger MCMC chain will

be required to validate this hypothesis.

4. Conclusion

Our analysis demonstrates that the autocorrelation length of a topological charge is very

small compared with the trajectory length of typical production grade Lattice QCD

computations. Our work is still in progress and, as more data is analyzed, we hope to

derive an empirical interpolating formula for the autocorrelation length as function of

the simulation parameters.
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Figure 1. Iso-surfaces for a 3D slice of a topological charge density for one gauge

configuration for different numbers of cooling steps (0,10, 15).

Figure 2. Iso-surfaces for a 3D slice of topological charge density for the same number

of cooling steps (20) for different consecutive gauge configurations separated by 6

trajectories.

Figure 3. Autocorrelation length for the three sets of gauge configurations considered

in the paper.
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