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We calculate the form factor fþðq2Þ for B-meson semileptonic decay in unquenched lattice QCD with

2þ 1 flavors of light sea quarks. We use Asqtad-improved staggered light quarks and a Fermilab bottom

quark on gauge configurations generated by the MILC Collaboration. We simulate with several light-

quark masses and at two lattice spacings, and extrapolate to the physical quark mass and continuum limit

using heavy-light meson staggered chiral perturbation theory. We then fit the lattice result for fþðq2Þ
simultaneously with that measured by the BABAR experiment using a parameterization of the form-factor

shape in q2, which relies only on analyticity and unitarity in order to determine the Cabibbo-Kobayashi-

Maskawa matrix element jVubj. This approach reduces the total uncertainty in jVubj by combining the

lattice and experimental information in an optimal, model-independent manner. We find a value of jVubj �
103 ¼ 3:38� 0:36.

DOI: 10.1103/PhysRevD.79.054507 PACS numbers: 12.38.Gc, 12.15.Hh, 13.20.He

I. INTRODUCTION

The semileptonic decay B ! �‘� is a sensitive probe of
the heavy-to-light-quark-flavor-changing b ! u transition.
When combined with an experimental measurement of the
differential decay rate, a precise QCD determination of the
B ! �‘� form-factor allows a clean determination of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element
jVubj with all sources of systematic uncertainty under
control. In the standard model, the differential decay rate
for this process is

d�ðB!�‘�Þ
dq2

¼ G2
FjVubj2

192�3m3
B

½ðm2
Bþm2

��q2Þ2�4m2
Bm

2
��3=2

�jfþðq2Þj2; (1)

where q � pB � p� is the momentum transferred from the
B meson to the outgoing leptons. The form factor fþðq2Þ
parameterizes the hadronic contribution to the weak decay,

and must be calculated nonperturbatively from first prin-
ciples using lattice QCD.
A precise knowledge of CKM matrix elements such as

jVubj is important not only because they are fundamental
parameters of the standard model, but because inconsis-
tencies between independent determinations of the CKM
matrix elements and CP-violating phase would provide
evidence for new physics. Although the standard model
has been amazingly successful in describing the outcome
of most particle physics experiments to date, it cannot
account for gravity, dark matter, and dark energy, or the
large matter-antimatter asymmetry of the Universe. Thus,
we know that it is incomplete, and expect new physics to
affect the quark-flavor sector to some degree, although we
do not know a priori what experimental and theoretical
precision will be needed to observe it.
The determination of jVubj from B ! �‘� semileptonic

decay relies upon the assumption that, because the leading
standard model decay amplitude is mediated by tree-level
W-boson exchange, it will not be significantly affected by
new physics at the current level of achievable precision.
Recently, however, hints of new physics have appeared in*ruthv@bnl.gov
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various regions of the heavy-quark-flavor sector such as
CP asymmetries in B ! K� [1], constraints on sinð2�Þ
from �F ¼ 2 neutral meson mixing and 1-loop penguin-
induced decays [2], and the phase of the Bs-mixing ampli-
tude [3–5]. The unexpected inconsistency most relevant to
our new lattice QCD calculation of the B ! �‘� form
factor and jVubj is the current ‘‘fDs

puzzle’’ [6]. The

HPQCD Collaboration’s lattice QCD calculation of the
Ds-meson leptonic decay constant fDs

[7] disagrees with

the latest results from the Belle, BABAR, and CLEO ex-
periments [8–12] at the 3-� level, although HPQCD’s
determinations of the masses mDþ and mDs

and the decay

constants f�, fK, and fDþ all agree quite well with
experimental measurements [13,14]. Furthermore, because
the significance of the discrepancy is dominated by the
statistical experimental uncertainties, it cannot easily be
explained by an underestimate of the theoretical uncertain-
ties. Additional lattice QCD calculations of fDs

are needed

to either confirm or reduce the inconsistency. If the dis-
agreement holds up, however, it is evidence for a large new
physics contribution to a tree-level standard model process
at the few percent level. Therefore, although B ! �‘�
semileptonic decay provides a theoretically clean method
for determining jVubj within the framework of the standard
model, we should keep in mind that new physics could
appear in b ! u transitions.

Understanding and controlling all sources of systematic
uncertainty in lattice QCD calculations of hadronic weak
matrix elements is essential in order to allow accurate
determinations of standard model parameters and reliable
searches for new physics. The hadronic amplitudes for
B ! �‘�, in particular, can be calculated accurately using
current lattice QCD methods because the decay process is
‘‘gold plated,’’ i.e., there is only a single stable hadron in
both the initial and final states. Lattice calculations with
staggered quarks allow for realistic QCD simulations with
dynamical quarks as light as ms=10, multiple lattice spac-
ings, large physical volumes, and high statistics. The re-
sulting simulations of many light-light and heavy-light
meson quantities with dynamical staggered quarks are in
excellent numerical agreement with experimental results
[15]. This includes both postdictions, such as the pion
decay constant [16], and predictions, as in the case of the
Bc meson mass [17]. Such successes show that the system-
atic uncertainties in these lattice QCD calculations are
under control, and give confidence that additional calcu-
lations using the same methods are reliable.

The publicly available MILC gauge configurations with
three flavors of improved staggered quarks [18] that have
enabled these precise lattice calculations make use of the
‘‘fourth-root’’ procedure for removing the undesired four-
fold degeneracy of staggered lattice fermions. Although
this procedure has not been rigorously proven correct,
Shamir uses plausible assumptions to argue that the con-
tinuum limit of the rooted theory is in the same universality

class as QCD [19,20]. The rooting procedure leads to
violations of unitarity that vanish in the continuum limit;
both theoretical arguments [21,22] and numerical simula-
tions [23–25], however, show that the unitarity-violating
lattice artifacts in the pseudo-Goldstone boson sector can
be described and hence removed using rooted staggered
chiral perturbation theory (rS�PT), the low-energy effec-
tive description of the rooted staggered lattice theory [26–
28]. Given the wealth of numerical and analytical evidence
supporting the validity of the rooting procedure, most of
which is reviewed in Refs. [29–31], we work under the
plausible assumption that the continuum limit of the rooted
staggered theory is QCD. We note, however, that it is
important to have cross-checks of lattice calculations of
phenomenologically important quantities using a variety of
fermion formulations, since they all have different sources
of systematic uncertainty.
Both existing unquenched lattice calculations of the

B ! �‘� form factor use the MILC configurations.
When combined with the Heavy Flavor Averaging
Group’s latest determination of the experimental decay
rate from ICHEP 2008 [32], they yield the following values
for jVubj:
jVubj � 103 ¼ 3:40� 0:20þ0:59

�0:39 HPQCD ½33�; (2)

jVubj � 103 ¼ 3:62� 0:22þ0:63
�0:41 Fermilab-MILC ½34�;

(3)

where the errors are experimental and theoretical, respec-
tively. Both analyses primarily rely upon data generated at
a ‘‘coarse’’ lattice spacing of a � 0:12 fm, and use a
smaller amount of ‘‘fine’’ data at a � 0:09 fm to check
the estimate of discretization errors. Neither is therefore
able to extrapolate the B ! �‘� form factor to the con-
tinuum (a ! 0). The most significant difference in the two
calculations is their use of different lattice formulations for
the bottom quarks. The HPQCD Collaboration [33] uses
nonrelativistic heavy quarks [34], whereas we use relativ-
istic clover quarks with the Fermilab interpretation [35] via
heavy-quark effective theory (HQET) [36–38]. Both meth-
ods work quite well for heavy bottom quarks. The Fermilab
treatment, however, has the advantage that it can also be
applied to charm quarks; we can therefore use the same
method for other semileptonic form factors such as D !
�‘�, D ! K‘�, and B ! D�‘� [39,40]. The two un-
quenched lattice calculations of the B ! �‘� form factor,
which have largely independent sources of systematic
uncertainty, nevertheless lead to consistent values of
jVubj with similar total errors of �15%.
In this paper we present a new model-independent un-

quenched lattice QCD calculation of the B ! �‘� semi-
leptonic form factor and jVubj. Our work builds upon the
previous Fermilab-MILC calculation and improves upon it
in several ways. We now include data on both the coarse
and fine MILC lattices, and can therefore take the a ! 0
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limit of our data, which is generated at nonzero lattice
spacing. We also have additional statistics on a subset of
the coarse ensembles. The most important improvements,
however, are in the analysis procedures.

We have removed all model-dependent assumptions
about the shape in q2 of the form factor from the current
analysis. Our result is therefore theoretically cleaner and
more reliable than those of previous lattice QCD calcula-
tions. The first refinement over previous unquenched lat-
tice B ! �‘� form-factor calculations is in the treatment
of the chiral and continuum extrapolations. We simulta-
neously extrapolate to physical quark masses and zero
lattice spacing and interpolate in the momentum transfer
q2 by performing a single fit to our entire data set (all
values ofmq, a, and q

2) guided by functional forms derived

in heavy-light meson staggered chiral perturbation theory
(HMS�PT) [41]. We thereby extract the physical form
factor fþðq2Þ in a controlled manner without introducing
a particular ansatz for the form factor’s q2 dependence. The
second refinement over previous unquenched B ! �‘�
lattice form-factor calculations is in the combination of
the lattice form-factor result and experimental data for the
decay rate to determine the CKMmatrix element jVubj. We
fit our lattice numerical Monte Carlo data and the 12-bin
BABAR experimental data [42] together to the model-
independent ‘‘z expansion’’ of the form factor given in
Ref. [43], in which the form factor is described by a power
series in a small quantity z with the sum of the squares of
the series coefficients bounded by unitarity constraints. We
leave the relative normalization factor jVubj as a free
parameter to be determined by the fit, thereby extracting
jVubj in an optimal, model-independent way. Others have
also fit lattice and experimental results together using
different, equally valid, parameterizations [44,45]. This
work, however, is the first to use the full correlation ma-
trices, derived directly from the data, for both the lattice
calculation and experimental measurement.

This paper is organized as follows: In Sec. II, we de-
scribe the details of our numerical simulations. We discuss
the gluon, light-quark, and heavy-quark lattice actions, and
present the parameters used, such as the quark masses and
lattice spacings. We then define the matrix elements
needed to calculate the semileptonic form factors and
discuss the method for matching the lattice heavy-light
current to the continuum. Next, we describe our analysis
for determining the form factors in Sec. III. This is a three-
step procedure. We first fit pion and B-meson 2-point
correlation functions to extract the meson masses. We
then fit the B ! � 3-point function, using the masses
and amplitudes from the 2-point fits as input, to extract
the lattice form factors at each value of the light-quark
mass and lattice spacing. Finally, we extrapolate the results
at unphysical quark masses and nonzero lattice spacing to
the physical light-quark masses and zero lattice spacing
using HMS�PT. In Sec. IV, we estimate the contributions

of the various systematic uncertainties to the form factors,
discussing each item in the error budget separately. We
then present the final result for fþðq2Þ with a detailed
breakdown of the error by source in each q2 bin. We
combine our result for the form factor with experimental
data from the BABAR Collaboration to determine the CKM
matrix element jVubj in Sec. V. We also define the model-
independent description of the form-factor shape that we
use in the fit and discuss alternative parameterizations of
the form factor. Finally, in Sec. VI, we compare our results
with those of previous unquenched lattice calculations. We
also compare our determination of jVubj with inclusive
determinations and to the preferred values from the global
CKM unitarity triangle analysis. We conclude by discus-
sing the prospects for improvements in our calculation and
its impact on searches for new physics in the quark-flavor
sector.

II. LATTICE CALCULATION

In this section we describe the details of our numerical
lattice simulations. We first present the actions and pa-
rameters used for the light (up, down, strange) and heavy
(bottom) quarks in Sec. II A. We then define the procedure
for constructing lattice correlation functions with both
staggered light and Wilson heavy quarks in Sec. II B.
Finally, in Sec. II C, we show how to match the lattice
heavy-light vector currents to the continuum with a mostly
nonperturbative method, so that lattice perturbation theory
is only needed to estimate a small correction.

A. Actions and parameters

We use the ensembles of lattice gauge fields generated
by the MILC Collaboration and described in Ref. [18] at
two lattice spacings, a � 0:12 and 0.09 fm, in our numeri-
cal lattice simulations of the B ! �‘� semileptonic form
factor. The ensembles include the effects of three dynami-
cal staggered quarks—two degenerate light quarks with
masses ranging from ms=8�ms=2 and one heavier quark
tuned to within 10–30% of the physical strange quark
mass. This allows us to perform a controlled extrapolation
to both the continuum and the physical average u-d quark
mass. The physical lattice volumes are all sufficiently large
(m�L * 4) to ensure that effects due to the finite spatial
extent remain small.
For each independent ensemble we compute the light

valence quark in the 2-point and 3-point correlation func-
tions only at the same mass,ml, as the light quark in the sea
sector. Thus all of our simulations are at the ‘‘full QCD’’
point. Note, however, that we still have many correlated
data points on each ensemble because of the multiple pion
energies. Table I shows the combinations of lattice spac-
ings, lattice volumes, and quark masses used in our
calculation.
For bottom quarks in 2-point and 3-point correlation

functions we use the Sheikholeslami-Wohlert (SW) ‘‘clo-
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ver’’ action [46] with the Fermilab interpretation via
HQET [35,36], which is well suited for heavy quarks,
even when amQ * 1. Because the spin-flavor symmetry

of heavy-quark systems is respected by the lattice regula-
tor, the expansion in 1=mQ of the heavy-quark lattice

action has the same form as the 1=mQ expansion of the

heavy-quark part of the QCD action. Discretization effects
in the lattice heavy-quark action are therefore parameter-
ized order by order in the heavy-quark expansion by devi-
ations of effective operator coefficients from their values in
continuum QCD. Thus, in principle, the lattice heavy-
quark action can be improved to arbitrarily high orders in
HQET by tuning a sufficiently large number of parameters
in the lattice action. In practice, we tune the hopping
parameter �, and the clover coefficient cSW, of the SW
action, to remove discretization effects through next-to-
leading order (NLO), Oð1=mQÞ, in the heavy-quark

expansion.
The SW action includes a dimension-five interaction

with a coupling cSW that must be adjusted to normalize
the heavy quark’s chromomagnetic moment correctly [35].
In our calculation we set the value of cSW ¼ u�3

0 , as

suggested by tadpole-improved, tree-level perturbation
theory [47]. We determine the value of u0 either from the
plaquette (a � 0:09 fm) or from the Landau link (a �
0:12 fm). The tadpole-improved bare quark mass for SW
quarks is given by

am0 ¼ 1

u0

�
1

2�
� 1

2�crit

�
; (4)

such that tuning the parameter � to the critical quark
hopping parameter �crit leads to a massless pion. Before
generating the correlation functions needed for the B !
�‘� form factor, we compute the spin-averaged Bs kinetic
mass on a subset of the available ensembles in order to tune
the bare � value for bottom (and hence the corresponding
bare quark mass) to its physical value [35]. We then use the
tuned value of �b for the B ! �‘� form-factor production
runs. Table I shows the values of the clover coefficient and
tuned �b used in our calculation.

In order to take advantage of the improved action in the
calculation of the B ! �‘� form factor, we must also
improve the flavor-changing vector current to the same
order in the heavy-quark expansion. We remove errors of
Oð1=mQÞ in the vector current by rotating the heavy-quark
field used in the matrix element calculation as

c b ! �b ¼ ð1þ ad1 ~� 	 ~DlatÞc b; (5)

where ~Dlat is the symmetric, nearest-neighbor, covariant
difference operator. We set d1 to its tadpole-improved tree-
level value of [35]

d1 ¼ 1

u0

�
1

2þm0a
� 1

2ð1þm0aÞ
�
: (6)

The values of the rotation parameter used in our calculation
are given in Table I.
In order to convert dimensionful quantities determined

in our lattice simulations into physical units, we need to
know the value of the lattice spacing, a, which we find by
computing a physical quantity that can be compared di-
rectly with experiment. We first determine the relative
lattice scale by calculating the ratio r1=a on each en-
semble, where r1 is related to the force between static
quarks, r21Fðr1Þ ¼ 1:0 [48]. These r1=a estimates are
then smoothed by fitting to a smooth function of the gauge
coupling and quark masses. This scale-setting method has
the advantage that the ratio r1=a can be determined pre-
cisely from a fit to the static quark potential [49,50]. We
convert all of our data from lattice spacing units into r1
units before performing any chiral fits in order to account
for slight differences in the value of the lattice spacing
between ensembles. In this work we use the value of

r
phys
1 ¼ 0:3108ð15Þðþ26

�79Þ obtained by combining a recent

lattice determination of r1f� [51] with the PDG value of
f� ¼ 130:7� 0:1� 0:36 MeV [52] to convert lattice re-
sults from r1 units to physical units.

B. Heavy-light meson correlation functions

The B ! �l� semileptonic form factors parameterize
the hadronic matrix element of the b ! u quark flavor-

TABLE I. Lattice simulation parameters. The columns from left to right are the approximate lattice spacing in fm, the bare light-
quark masses aml=ams, the linear spatial dimension of the lattice in fm, the dimensionless factor m�L (corresponding to the taste-
pseudoscalar pion composed of light sea quarks), the dimensions of the lattice in lattice units, the number of configurations used for
this analysis, the clover term cSW and bare � value used to generate the bottom quark, and the improvement coefficient used to rotate
the bottom quark field in the b ! u vector current.

a (fm) aml=ams L (fm) m�L Volume # Configs. cSW �b d1

0.09 0:0062=0:031 2.4 4.1 283 � 96 557 1.476 0.0923 0.09 474

0.09 0:0124=0:031 2.4 5.8 283 � 96 518 1.476 0.0923 0.09 469

0.12 0:005=0:05 2.9 3.8 243 � 64 529 1.72 0.086 0.09 372

0.12 0:007=0:05 2.4 3.8 203 � 64 836 1.72 0.086 0.09 372

0.12 0:01=0:05 2.4 4.5 203 � 64 592 1.72 0.086 0.09 384

0.12 0:02=0:05 2.4 6.2 203 � 64 460 1.72 0.086 0.09 368
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changing vector current V� � i �u��b:

h�jV�jBi ¼ fþðq2Þ
�
p
�
B þ p

�
� �m2

B �m2
�

q2
q�

�

þ f0ðq2Þm
2
B �m2

�

q2
q�; (7)

where q2 is the momentum transferred to the outgoing
lepton pair. For calculations on the lattice and in HQET,
it is more convenient to write the matrix element as [53]

h�jV�jBi ¼ ffiffiffiffiffiffiffiffiffi
2mB

p ½v�fkðE�Þ þ p�
?f?ðE�Þ�; (8)

where v� ¼ p
�
B=mB is the four-velocity of the B meson,

p
�
? ¼ p

�
� � ðp� 	 vÞv� is the component of the pion mo-

mentum orthogonal to v, and E� ¼ p� 	 v ¼ ðm2
B þ

m2
� � q2Þ=ð2mBÞ is the energy of the pion in the

B-meson rest frame ( ~pB ¼ ~0). In this frame the form
factors fkðE�Þ and f?ðE�Þ are directly proportional to

the hadronic matrix elements

fkðE�Þ ¼ h�jV 0jBiffiffiffiffiffiffiffiffiffi
2mB

p ; (9)

f?ðE�Þ ¼ h�jV ijBiffiffiffiffiffiffiffiffiffi
2mB

p 1

pi
�

: (10)

We therefore first calculate the hadronic matrix elements in
Eqs. (9) and (10) in the rest frame of the Bmeson to obtain
fkðE�Þ and f?ðE�Þ, and then extract the standard form

factors f0ðq2Þ and fþðq2Þ using the following relations:

f0ðq2Þ ¼
ffiffiffiffiffiffiffiffiffi
2mB

p
m2

B �m2
�

½ðmB � E�ÞfkðE�Þ

þ ðE2
� �m2

�Þf?ðE�Þ�; (11)

fþðq2Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2mB

p ½fkðE�Þ þ ðmB � E�Þf?ðE�Þ�: (12)

These relations automatically satisfy the kinematic con-
straint fþð0Þ ¼ f0ð0Þ.

The 2-point and 3-point correlation functions needed to
extract the lattice matrix element for B ! �‘� decay are

C�
2 ðt; ~p�Þ ¼

X
~x

ei ~p�	 ~xhO�ð0; ~0ÞOy
�ðt; ~xÞi; (13)

CB
2 ðtÞ ¼

X
~x

hOBð0; ~0ÞOy
Bðt; ~xÞi; (14)

CB!�
3;� ðt; T; ~p�Þ ¼

X
~x; ~y

ei ~p�	 ~yhO�ð0; ~0ÞV�ðt; ~yÞOy
BðT; ~xÞi;

(15)

where OB and O� are interpolating operators for the B
meson and pion, respectively, and V� is the heavy-light

vector current on the lattice.

In practice, to construct the heavy-light bilinears we
must combine a staggered light quark, which is a 1-
component spinor, with a 4-component Wilson-type bot-
tom quark; we do so using the method established by
Wingate et al. in Ref. [54]. For the B meson we use a
mixed-action interpolating operator:

O B;�ðxÞ ¼ �c 	ðxÞ�5
	����ðxÞ�ðxÞ; (16)

where	,� are spin indices and�ðxÞ � �
x0
0 �

x1
1 �

x2
2 �

x3
3 . The

fields c and � are the 4-component clover quark field and
1-component staggered field, respectively. Based on the
transformation properties of OB;�ðxÞ under shifts by one

lattice spacing,� plays the role of a (fermionic) taste index
[31,54]. Once OB;�ðxÞ is summed over 24 hypercubes in

the correlation functions that we compute,� also takes on
the role of a taste degree of freedom, in the sense of
Refs. [55,56]. Because the heavy-quark field �c 	ðxÞ is
slowly varying over a hypercube, it does not affect the
construction of Refs. [55,56].
For the pion we use the local pseudoscalar interpolating

operator

O �ðxÞ ¼ "ðxÞ ��ðxÞ�ðxÞ; (17)

where "ðxÞ � ð�1Þðx1þx2þx3þx4Þ. We take the vector current
to be

V
�
�
ðxÞ ¼ ��	ðxÞ��

	����ðxÞ�ðxÞ; (18)

where � is the rotated heavy-quark field given in Eq. (5).
When forming CB

2 ðtÞ and CB!�
3;� ðt; T; ~p�Þ, we sum over the

taste index. This yields the same correlation functions,
with respect to taste, as in Ref. [54]. Our principal differ-
ence with Ref. [54] is to use 4-component heavy quarks
instead of 2-component nonrelativistic (NRQCD) quarks,
and to derive the correlators in the staggered formalism,
without the introduction of naive fermions.
We work in the rest frame of the B meson, so only the

pions carry momentum. We compute both the 2-point
function C�

2 ðt; ~p�Þ and the 3-point function
CB!�
3;� ðt; T; ~p�Þ at discrete values of the momenta ~p� ¼

2�ð0; 0; 0Þ=L; 2�ð1; 0; 0Þ=L; 2�ð1; 1; 0Þ=L; 2�ð1; 1; 1Þ=L,
and 2�ð2; 0; 0Þ=L allowed by the finite spatial lattice vol-
ume. We use only data through momentum ~p� ¼
2�ð1; 1; 1Þ=L, however, because the statistical errors in
the correlators increase significantly with momentum.
We use a local source for the pions throughout the

calculation, while we smear the B-meson wave function
in both the 2-point function CB

2 ðtÞ and the 3-point function
CB!�
3;� ðt; T; ~p�Þ:
~O B;�ðt; ~xÞ ¼

X
~y

Sð ~yÞ �c 	ðt; ~xþ ~yÞ�5
	����ðt; ~xÞ�ðt; ~xÞ;

(19)

where Sð ~yÞ is the spatial smearing function. This reduces
contamination from heavier excited states and allows a
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better determination of the desired ground-state amplitude.
In our study of choices for how to smear the B meson, we
found that a wall source, Sð ~yÞ ¼ 1, worked extremely well
for suppressing excited-state contamination, but at the cost
of large statistical errors in the 2-point and 3-point corre-
lation functions. In contrast, use of a 1S wave function
Sð ~yÞ ¼ expð��j ~yjÞ, optimized to have good overlap with
the charmonium ground state led to smaller statistical
errors at the cost of undesirably large excited-state contri-
butions to the 3-point function that would make it difficult
to extract the ground-state amplitude. In order to achieve a
balance between small statistical errors and minimal
excited-state contamination, we tune the coefficient of
the exponential in the 1S wavefunction to the smallest
value (i.e., the widest smearing) for which the B-meson
2-point effective mass is still well behaved; we find a value
of a� ¼ 0:20 for the coarse ensembles. We note that our
determination of the optimal B-meson smearing function is
consistent with the theoretical expectation that the
B-meson wave function should be wider than the charmo-
nium wave function.

For the calculation of the 3-point function, we fix the
location of the pion source at ti ¼ 0 and the location of the
B-meson sink at tf ¼ T, and vary the position of the

operator over all times t in between. If the source-sink
separation is too small, then the entire time range 0< t <
T is contaminated by excited states, but if the source-sink
separation is too large, then the correlation function be-
comes extremely noisy. In practice, we set the sink time
to T ¼ 16 on the coarse lattices; we have checked, how-
ever, that our results using this choice are consistent with
those determined from using T ¼ 12 and T ¼ 20. On the
fine lattices we scale the source-sink separation by the
approximate ratio of the lattice spacings afine=acoarse and
use T ¼ 24.

In order to minimize the statistical errors given the
available number of configurations in each ensemble, we
compute the necessary 2-point and 3-point correlations not
only with a source time of ti ¼ 0, but also with source
times of ti ¼ nt=4, nt=2, and 3nt=4 (nt is the temporal
extent of the lattice) and the sink time T shifted accord-
ingly. We then average the results from the four source
times; this effectively increases our statistics by a factor
of 4.

C. Heavy-light current renormalization

In order to recover the desired continuum matrix ele-
ment, the lattice amplitude must be multiplied by the
appropriate renormalization factor Zbl

V�
:

h�jV�jBi ¼ Zbl
V�

� h�jV�jBi; (20)

where V� and V� are the lattice and continuum b ! u

vector currents, respectively. This removes the dominant
discretization errors from the lattice current operator. In
terms of the form factors, Eq. (20) can be rewritten as

fk ¼ Zbl
V0

� flatk ; (21)

f? ¼ Zbl
Vi
� flat? ; (22)

where explicit expressions relating flatk and flat? to correla-

tion functions are given in Eqs. (40) and (41).
In this work, we calculate Zbl

V�
via the mostly nonper-

turbative method used in the earlier quenched Fermilab
calculation [53]. We first rewrite Zbl

V�
as

Zbl
V�

¼ 
hl
V�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zbb
V Zll

V

q
: (23)

The flavor-conserving renormalization factors Zbb
V and Zll

V

account for most of the value of Zbl
V [37]. They can be

determined from standard heavy-light meson charge nor-
malization conditions

Zll
V � hDjVll;0jDi ¼ 1; (24)

Zbb
V � hBjVbb;0jBi ¼ 1; (25)

where the light-light and heavy-heavy lattice vector cur-
rents are given by

Vll;�
��0 ðxÞ ¼ �yðxÞ�ðxÞy

�	
��
	��ðxÞ��0�ðxÞ; (26)

Vbb;�ðxÞ ¼ ��b	ðxÞ��
	��b�ðxÞ; (27)

respectively. In order to reduce the statistical errors in Zll
V ,

we compute the lattice matrix element hDjVll;0jDi using a
clover charm quark as the spectator in the 3-point correla-
tion function. We eliminate contamination from staggered
oscillating states in the determination of Zbb

V by using a
clover strange quark for the spectator in the 3-point corre-
lation function hBjVbb;0jBi. Once Zll

V and Zbb
V have been

determined nonperturbatively, the remaining correction
factor in Eq. (23), 
hl

V�
, is expected to be close to unity

because most of the radiative corrections, including con-
tributions from tadpole graphs, cancel in the ratio [37]. We
therefore estimate 
hl

V�
from 1-loop lattice perturbation

theory [47].
The matching factor 
hl

V�
has been calculated by a subset

of the present authors, and a separate publication describ-
ing the details is in preparation [57]. The corrections to 
hl

V�

can be expressed as a perturbative series expansion in
powers of the strong coupling


hl
V�

¼ 1þ 4�	Vðq�Þ
hl½1�
V�

þOð	2
VÞ; (28)

where 	Vðq�Þ is the renormalized coupling constant in the
V-scheme and is determined from the static quark potential
with the same procedure as is used in Ref. [58]. The scale
q�, which should be the size of a typical gluon loop
momentum, is computed via an extension of the methods
outlined by Brodsky, Lepage, and Mackenzie [47,59] and
Hornbostel, Lepage, and Morningstar [60]. The value of q�
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ranges from 2.0–4.5 GeV for the parameters used in our

simulations. The 1-loop coefficient 
hl½1�
V�

and higher mo-

ments are calculated using automated perturbation theory
and numerical integration as described in Refs. [61,62]. We
find that the perturbative corrections to matrix elements of
the temporal vector current, V0, are less than a percent,
while the corrections to matrix elements of the spatial
vector current Vi are 3–4%.

III. ANALYSIS

In this section, we describe the three-step analysis pro-
cedure used to calculate the B ! �‘� semileptonic form
factor fþðq2Þ. In the first subsection, Sec. III A, we de-
scribe how we fit the pion and B-meson 2-point correlation
functions in order to determine the pion energies and
B-meson mass. We use both of these quantities in the later
determination of the lattice form factors fkðE�Þ and

f?ðE�Þ. Next, in Sec. III B, we construct a useful ratio of
the 3-point correlation function h�jVjBi to the 2-point
functions. We then fit this ratio to a simple plateau ansatz
to extract the desired form factors. Finally, in Sec. III C, we
extrapolate the form factors calculated at unphysically
heavy-quark masses and finite lattice spacing to the physi-
cal light-quark masses and zero lattice spacing using NLO
HMS�PT expressions extended with next-to-next-to-
leading order (NNLO) analytic terms. (We perform a si-
multaneous extrapolation in mq and a and interpolation in

E�.) We then take the appropriate linear combination of
fkðE�Þ and f?ðE�Þ to determine the desired form factor,

fþðq2Þ, with statistical errors.

A. Two-point correlator fits

The pion and B-meson 2-point correlators obey the
following functional forms:

C�
2 ðt; ~p�Þ ¼

X
m

ð�1Þmtjh0jO�j�ðmÞij2 e
�EðmÞ

� t

2EðmÞ
�

; (29)

CB
2 ðtÞ ¼

X
m

ð�1Þmtjh0jOBjBðmÞij2 e
�mðmÞ

B t

2mðmÞ
B

: (30)

In the above expressions, terms with odd m contain the
prefactor ð�1Þt. This leads to visible oscillations in time in
the meson propagators; such behavior arises with stag-
gered quarks because the parity operator is a composition
of spatial inversion and translation through one timeslice
[63,64]. The contributions of the opposite-parity oscillat-
ing states are found to be significant throughout the entire
time range and must therefore be included in fits to extract
the desired ground-state energy.
Because the statistical errors in the pion energies and

B-meson mass contribute very little to the total statistical
error in the B ! �‘� form factor, we use a simple proce-
dure to fit the 2-point functions. Although this does not
optimize the determinations of E� and mB, it is sufficient
for the purpose of this analysis. We first select a fit range,
tmin–tmax, which allows a good correlated, unconstrained fit
including only contributions from the ground state and its
opposite-parity partner. We then reduce tmin by one time-
slice and redo the fit. If the correlated confidence level is
too low ( & 10%), we increase the number of states and try
the fit again with the same time range. Otherwise, if the fit
is good, we reduce tmin by one more timeslice and repeat
the fit. We repeat this procedure until we can no longer get
a good fit without using a large number (greater than 4) of
states. We note that, by including only as many states as the
data can determine, we minimize the possibility of spuri-
ous solutions in which the fitter exchanges the ground state
with one of the same-parity excited states. We have, how-
ever, checked that this method yields the same results

FIG. 1 (color online). Pion mass (left plot) and B-meson mass (right plot) versus minimum timeslice in 2-point correlator fit. The red
(filled) data points show the fit ranges selected for use in the B ! �‘� form-factor analysis.
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within statistical errors as a constrained fit that includes up
to three or four pairs of states.

Figure 1 shows examples of both m� vs tmin (left plot)
and mB vs tmin (right plot) on the aml=ams ¼ 0:02=0:05
coarse ensemble, which has the largest light-quark mass of
the coarse ensembles. The masses are stable as tmin is
reduced, and the statistical errors in mB become smaller
as additional timeslices are added to the fit. The statistical
errors are determined by performing a separate fit to 500
bootstrap ensembles; each fit uses the full single-
elimination jackknife correlation matrix, which is remade
before every fit. The size of the statistical errors does not
change when the number of bootstrap ensembles is in-
creased by factors of two or four. We select the time range

to use in the B ! �‘� analysis based on several criteria: a
good correlated confidence level, relatively symmetric
upper and lower bootstrap error bars, no 5-� or greater
outliers in the bootstrap distribution, and no sign of
excited-state contamination. The red (filled) data points
in Fig. 1 mark the chosen fit ranges for the ensemble in
the example plots. Figures 2 and 3 show the corresponding
pion and B-meson correlator fits, respectively, which go
through the data points (shown with jackknife errors) quite
well.
The gauge configurations have been recorded every six

trajectories, and the remaining autocorrelations between
consecutive configurations cannot be neglected. We ad-
dress this by averaging a block of successive configurations

FIG. 2 (color online). Pion correlator fit corresponding to the red data point in the left-hand graph of Fig. 1. The left plot shows the fit
(red line) to the zero-momentum pion propagator on a log scale, while the right plot shows the deviation of the fit from the data point
for each timeslice. On both plots the dashed vertical line indicates tmin. Single-elimination jackknife statistical errors are shown.

FIG. 3 (color online). B-meson correlator fit corresponding to the red data point in the right-hand graph of Fig. 1. The left plot shows
the fit (red line) to the B-meson propagator on a log scale, while the right plot shows the deviation of the fit from the data point for each
timeslice. On both plots the dashed vertical line indicates tmin. Single-elimination jackknife statistical errors are shown.
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together before calculating the correlation matrix and per-
forming the fit. We determine the optimal block size by
increasing the number of configurations in a block until the
single-elimination jackknife statistical error in the correla-
tor data remains constant within errors. This is shown for a
representative timeslice of the pion propagator on a coarse

ensemble in Fig. 4. We find that it is necessary to use a
block size of 5 on the coarse ensembles and 8 on the fine
ensembles, and we use these values for the rest of the form-
factor analysis. We note that the size of the statistical errors
that arises from blocking by 5 on the coarse ensemble is
consistent with that estimated based on a calculation of the
integrated autocorrelation time.
The pion energy E� that is extracted from fitting the 2-

point function, C�
2 ðt; ~p�Þ, should satisfy the dispersion

relation E2
� ¼ j ~p�j2 þm2

� in the continuum limit due to
the restoration of rotational symmetry. Similarly, the pion
amplitude Z� � jh0jO�j�ij should be independent of ~p�

as a ! 0. As shown in Fig. 5, our results are consistent
with these continuum relations within statistical errors.1

We therefore replace the pion energy E� by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ~p�j2 þm2

�

p
when calculating the lattice form factors fkðE�Þ and

f?ðE�Þ in order to reduce the total statistical uncertainty.
The pion amplitude drops out of the form-factor calcula-
tion, however, because we take suitable ratios of 3-point to
2-point correlators.

B. Three-point correlator fits

The B ! � 3-point correlator obeys the following func-
tional form:

CB!�
3;� ðt; TÞ ¼ X

m;n

ð�1Þmtð�1ÞnðT�tÞAmn
� e�EðmÞ

� te�mðnÞ
B ðT�tÞ;

(31)

where

FIG. 4 (color online). Single-elimination jackknife error ver-
sus block size in the zero-momentum pion propagator at t ¼ 6.
The statistical errors in the errors are calculated with an addi-
tional single-elimination jackknife loop. The red line is an
average of the errors for block sizes 5–8 and is only to make
it easier to see that the statistical error plateaus after a block size
of 5; it is not used in the form-factor analysis.

FIG. 5 (color online). Comparison of pion energy E� (left plot) and amplitude Z� (right plot) with the prediction of the continuum
dispersion relation. We also show a power-counting estimate for the size of momentum-dependent discretization errors, which are of
Oð	sðaj ~p�jÞ2Þ, as dashed black lines.

1As this analysis was being completed we generated data with 4 times the statistics on the aml=ams ¼ 0:02=0:05 coarse ensemble.
In order to make the comparison to the continuum expectation clearer, we use the higher statistics data in Fig. 5.
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Amn
� � h0jO�j�ðmÞi

2EðmÞ
�

h�ðmÞjV�jBðnÞi hB
ðnÞjOBj0i
2mðnÞ

B

: (32)

Writing out the first four terms of CB!�
3;� ðt; TÞ makes the

behavior of the 3-point correlator as a function of both t
and T more transparent:

CB!�
3;� ðt; TÞ ¼ A00

� e�Eð0Þ
� te�mð0Þ

B ðT�tÞ

þ ð�1ÞðT�tÞA01
� e�Eð0Þ

� te�mð1Þ
B ðT�tÞ

þ ð�1ÞtA10
� e�Eð1Þ

� te�mð0Þ
B ðT�tÞ

þ ð�1ÞTA11
� e�Eð1Þ

� te�mð1Þ
B ðT�tÞ þ . . . (33)

As in the case of the pion and B-meson propagators, the
leading contributions from the opposite-parity excited
states (the A10

� and A01
� terms) change sign when t ! tþ

1; these produce visible oscillations in the correlation
function along the time direction. The subleading contri-
bution from the opposite-parity excited states (the A11

�

term), however, only changes sign when the source-sink
separation is varied, e.g., T ! T þ 1; this contribution is
not as clearly visible in the data as those that oscillate with
the time slice t.

The lattice form factors are related to the ground-state
amplitude of the 3-point function CB!�

3;� ðt; TÞ as follows:

flatk ¼ A00
0

�
2E�

ffiffiffiffiffiffiffiffiffi
2mB

p
Z�ZB

�
; (34)

flat? ¼ A00
i

�
2E�

ffiffiffiffiffiffiffiffiffi
2mB

p
Z�ZB

�
1

pi
�

; (35)

where, as before, Z� � jh0jO�j�ij and ZB � jh0jOBjBij.
The pion and B-meson energies and amplitudes are known
from the 2-point fits described in the previous subsection.
Thus, the goal is to determine the 3-point amplitude A00

� for

� along both the spatial and temporal directions.
In principle, the easiest way to determine the coefficient

A00
� is to divide the 3-point function CB!�

3;� ðt; TÞ by the

appropriate 2-point functions and fit to a constant (plateau)
ansatz in a region of time slices 0 
 t 
 T that are
sufficiently far from both the pion and B-meson sources,
such that excited-state contamination can be neglected. In
practice, however, oscillating excited-state contributions
are significant throughout the interval between the pion
and B-meson, so our raw correlator data cannot be fit to
such a simple function. Therefore, we construct an average
correlator in which the oscillations are reduced before
performing any fits. This method for determining the
form factors requires knowledge of E� and mB; we use
the values determined in the 2-point fits described in the

previous subsection and propagate the bootstrap uncertain-
ties in order to properly account for correlations.
The final ratio of correlators used to determine A00

�

entails several pieces. To begin consider the carefully
constructed average of the value of the B-meson propaga-
tor at time slice t with that at tþ 1:

CB
2 ðtÞ ! C0B

2 ðtÞ ¼
e�mð0Þ

B t

2

�
CB
2 ðtÞ

e�mð0Þ
B t

þ CB
2 ðtþ 1Þ

e�mð0Þ
B ðtþ1Þ

�

¼ Z2
B

2mð0Þ
B

e�mð0Þ
B t þ ð�1Þt Z02

B

2mð1Þ
B

e�mð1Þ
B t

�
�
1� e��mB

2

�
þ . . . ; (36)

where �mB � mð1Þ
B �mð0Þ

B . By removing the leading ex-
ponential behavior from the correlator before taking the
average we suppress the leading oscillating contribution by
a factor of the mass-splitting �mB=2 while leaving the
desired ground-state amplitude unaffected. Note also
that, while this procedure affects the size of the excited-
state amplitudes, it does not alter the functional form of the
correlator, nor does it alter the energies in the exponentials.
Therefore, the average in Eq. (36) is equivalent to using a
smeared source that has a smaller coupling to the opposite-
parity excited states. This averaging procedure can be
iterated in order to make the oscillating terms arbitrarily
small. Empirically, we find that two iterations are sufficient
for all of our numerical data:

�CB
2 ðtÞ �

e�mð0Þ
B t

4

�
CB
2 ðtÞ

e�mð0Þ
B t

þ 2CB
2 ðtþ 1Þ

e�mð0Þ
B ðtþ1Þ þ CB

2 ðtþ 2Þ
e�mð0Þ

B ðtþ2Þ

�

� Z2
B

2mð0Þ
B

e�mð0Þ
B t þ ð�1Þt Z02

B

2mð1Þ
B

e�mð1Þ
B t

�
�m2

B

4

�

þOð�m3
BÞ: (37)

At our various light-quark masses and lattice spacings the
mass splittings lie in the range 0:1 & �mB & 0:3 in lattice
units; thus, use of the iterated average in Eq. (37) reduces
the leading oscillating state amplitude by a factor of
�50–400 such that it can be safely neglected.
In the case of the B ! � 3-point correlation function,

wewish to reduce both the oscillating contributions and the
less visible nonoscillating contributions that arise from the
cross term between the lowest-lying pion and B-meson
opposite-parity states. If these contributions are reduced
sufficiently, we can safely neglect all of them when ex-
tracting the ground-state amplitude A00

� . We therefore con-

struct a slightly more sophisticated average, which
combines the correlator both at consecutive time slices (t
and tþ 1) and at consecutive source-sink separations (T
and T þ 1):
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�CB!�
3;� ðt; TÞ ¼ e�Eð0Þ

� te�mð0Þ
B ðT�tÞ

8

� CB!�
3;� ðt; TÞ

e�Eð0Þ
� te�mð0Þ

B ðT�tÞ þ
CB!�
3;� ðt; T þ 1Þ

e�Eð0Þ
� ðtÞe�mð0Þ

B ðTþ1�tÞ þ
2CB!�

3;� ðtþ 1; TÞ
e�Eð0Þ

� ðtþ1Þe�mð0Þ
B ðT�t�1Þ

þ 2CB!�
3;� ðtþ 1; T þ 1Þ

e�Eð0Þ
� ðtþ1Þe�mð0Þ

B ðT�tÞ þ CB!�
3;� ðtþ 2; TÞ

e�Eð0Þ
� ðtþ2Þe�mð0Þ

B ðT�t�2Þ þ
CB!�
3;� ðtþ 2; T þ 1Þ

e�Eð0Þ
� ðtþ2Þe�mð0Þ

B ðT�t�1Þ

�

� A00
� e�Eð0Þ

� te�mð0Þ
B ðT�tÞ þ ð�1ÞTA11

� e�Eð1Þ
� te�mð1Þ

B ðT�tÞ
�
�mB

2

�
þOð�E2

�;�E��mB;�m
2
BÞ: (38)

This average reduces the unwanted parity states’ contami-
nation significantly. It eliminates both the leadingOð1Þ and
subleading Oð�E�Þ contributions to the oscillating A10

term, the two lowest-order Oð1;�mBÞ contributions to
the oscillating A01 term, and the Oð1;�E�Þ contributions
to the nonoscillating A11 term. The size of the remaining
A11 term is a factor of �7–20 times smaller than in the
unsmeared 3-point correlator.

We can now safely ignore contamination from opposite-
parity states and determine the lattice form factors in a
simple manner. We construct the following ratio of the
smeared correlators:

�R B!�
3;� ðt; TÞ �

�CB!�
3;� ðt; TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�C�
2 ðtÞ �CB

2 ðT � tÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�

e�Eð0Þ
� te�mð0Þ

B ðT�tÞ

s
: (39)

The lattice form factors are then

flatk ¼ �RB!�
3;0 ðt; TÞ; (40)

flat? ¼ 1

pi
�

�RB!�
3;i ðt; TÞ: (41)

We fit flatk and flat? as defined in Eqs. (40) and (41) to a

plateau in the region 0 
 t 
 T, where ordinary excited-
state contributions can be neglected. Figure 6 shows the
determinations of flatk (left plot) and flat? (right plot) for all

of the momenta that we use in the chiral extrapolation on
the coarse ensemble with aml=ams ¼ 0:02=0:05. In prac-
tice, we fit a range of four time slices, choosing the interval
that results in the best correlated confidence level. We have
cross-checked the determination of the form factors via
Eqs. (40) and (41) against determinations of the form
factor that explicitly include excited-state dependence in
the fit ansatz and find that the results agree within errors.
Our preferred method, however, yields the smaller statis-
tical uncertainty in the form factors.

C. Continuum and chiral extrapolation

The quark masses in our numerical lattice simulations
are heavier than the physical up and down quark masses.
The effects of nonzero lattice spacings in Asqtad simula-
tions are also too large to be neglected. In order to account
for these facts, we calculate the desired hadronic matrix
elements for multiple values of the light-quark masses and
lattice spacing, and then extrapolate to the physical quark
masses and continuum using functional forms from heavy-

FIG. 6 (color online). Determination of the form factors fk (left plot) and f? (right plot) from plateau fits to the ratios defined in
Eqs. (40) and (41). The statistical errors on the data points are from a single-elimination jackknife. The statistical errors in the plateau
determination are from separate fits of 500 bootstrap ensembles.
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light meson staggered chiral perturbation theory
(HMS�PT) [41]. The HMS�PT expressions are derived
using the symmetries of the staggered lattice theory, and
therefore contain the correct dependence of the form fac-
tors on the quark mass and lattice spacing. In the case of the
B ! �‘� form factors, the HMS�PT expressions are also
functions of the pion energy (recall that we work in the
frame where the B meson is at rest).

HMS�PT is a systematic expansion in inverse powers of
the heavy-quark mass. In the chiral and soft pion limits
(ml ! 0 and E� ! 0Þ, the leading-order continuum
HM�PT expressions for fk and f? take the following

simple forms:

fkðE�Þ ¼ �B

f�
; (42)

f?ðE�Þ ¼ �B�

f�

gB�B�

E� þ ��
B

; (43)

where �B � fB
ffiffiffiffiffiffiffi
mB

p
, fB is the B-meson decay constant,

and f� is the pion decay constant. The coefficient gB�B�
parameterizes the size of the B�-B-� coupling. In the static
heavy-quark limit, heavy-quark spin symmetry does not
distinguish between the pseudoscalar B meson and the
vector B� meson, which implies that the decay constant
�B� ¼ �B and the mass difference ��

B � mB� �mB ! 0.
Inclusion of the parameter��

B, however, ensures the proper
location of the pole at m2

B� in the physical form factor

fþðq2Þ. At the next order in the heavy-quark expansion,
Oð1=mbÞ corrections split the degeneracy between the B-
and B�-meson masses and decay constants. Furthermore,
in the chiral and soft pion limits, all 1=mb corrections can
be absorbed into the values of the parameters �B, �B� ,
gB�B�, and ��

B [65]; thus, fk and f? retain the functional

forms in Eqs. (42) and (43) even at NLO in HM�PT.
At lowest order in S�PT, discretization effects split the

degeneracies among the 16 tastes of pseudo-Goldstone
mesons

m2
xy;�

¼ �ðmx þmyÞ þ a2��; (44)

where x and y indicate the quark flavors, � is a continuum
low-energy constant, and �� is the mass splitting of a
meson with taste �. An exact Uð1ÞA symmetry protects
the taste-pseudoscalar meson from receiving a mass shift to
all orders in S�PT, implying that �P ¼ 0. In addition, at
Oða2Þ, a residual SOð4Þ taste symmetry preserves the
degeneracies among mesons that are in the same irreduc-
ible representation: P, V, A, T, I [26]. Numerically, the size
of the taste splittings turn out to be comparable to those of
the pion masses for the a ¼ 0:09 fm and a ¼ 0:12 fm
Asqtad staggered lattices used in this work [16].

We extrapolate our numerical form-factor data using
HMS�PT expressions derived to zeroth order in 1=mb.

The fit functions therefore depend upon the three remain-
ing expansion parameters: ml, a, and E�. The HMS�PT
expressions for the form factors to Oðml; a

2; E2
�Þ are given

explicitly in Eqs. (65)–(67) of Ref. [41]. Schematically,
they read

fkðml; E�; aÞ ¼
cð0Þk
f�

½1þ logsþ cð1Þk ml þ cð2Þk ð2ml þmsÞ

þ cð3Þk E� þ cð4Þk E2
� þ cð5Þk a2�; (45)

f?ðml; E�; aÞ ¼
cð0Þ?
f�

�
1

E� þ ��
B þ logs

þ 1

E� þ��
B

� logs

�
þ cð0Þ? =f�

E� þ ��
B

� ½cð1Þ? ml þ cð2Þ? ð2ml þmsÞ
þ cð3Þ? E� þ cð4Þ? E2

� þ cð5Þ? a2�; (46)

where ‘‘logs’’ indicate nonanalytic functions of the
pseudo-Goldstone meson masses, e.g., m2

� lnðm2
�=�

2
�Þ.

The continuum low-energy constant gB�B� enters these
expressions in the coefficients of the chiral logarithms,
which are completely fixed at this order. We use the
phenomenological value of gB�B� ¼ 0:51 [43] for the cen-
tral value and vary gB�B� by a reasonable amount (see
Sec. IVB) to estimate its contribution to the systematic
uncertainty. Because the size of the mass splitting ��

B is
poorly determined from the lattice data and is consistent
with the physical value within statistical errors, we fix ��

B

to the PDG value, 45.78 MeV [13], in our fits. The chiral
logarithms also depend upon six extra constants that pa-
rameterize discretization effects due to the light staggered
quarks: the four taste splittings a2�V , a

2�A, a
2�T , a

2�I

and the two flavor-neutral ‘‘hairpin’’ coefficients a2�0
V and

a2�0
A [27]. These parameters can be determined separately

from fits to light pseudoscalar meson masses and decay
constants; we therefore hold them fixed to the values
determined in Ref. [66], while performing the
continuum-chiral extrapolation. The variation of these pa-
rameters within their statistical errors results in a negligible
change to the extrapolated form factors. The five terms
analytic in ml, a

2, and E� absorb the dependence upon the
scale in the chiral logarithms,��, such that the form factor

is scale independent. We leave the tree-level coefficients

cð0Þk;? and the NLO analytic term coefficients cð1Þk;?–c
ð5Þ
k;? as

free parameters to be determined via the fit to the lattice
form-factor data. In practice, we omit the analytic term
proportional to (2ml þms) from our fits because the
strange sea-quark mass is tuned to approximately the
same value on each of our ensembles and we have simu-
lated only full QCD points. This term is therefore largely
indistinguishable from the analytic term proportional to
ml. We have checked that omission of the sea-quark mass
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analytic term has a negligible impact on the form factors in
the chiral and continuum limits.

In both earlier unquenched analyses of the B ! �‘�
semileptonic form factor [33,67], the chiral extrapolation is
performed as a two-step procedure: first interpolate the
lattice data to fiducial values of E� and then extrapolate
the results to the physical quark masses and continuum
independently at each value of E�. The function used for
the interpolation (which is different in the two analyses)
introduces a systematic uncertainty that is difficult to esti-
mate. In both cases, the chiral-continuum extrapolation
makes use of the correct functional forms derived in
HMS�PT, but, by extrapolating the results for each value
of E� separately, the constraint that the low-energy con-
stants of the chiral effective Lagrangian are independent of
the pion energy is lost. This omission of valuable informa-
tion about the form-factor shape introduces a further error
that is unnecessary. The new analysis presented here in-
stead employs a simultaneous fit using HMS�PT to our
entire data set (all values ofml, a, and E�) to extrapolate to
physical quark masses and the continuum and interpolate
in the pion energy [68]. This improved method eliminates
the systematic uncertainties introduced in the two-step
interpolate-then-extrapolate procedure, and exploits the
available information in an optimal way.

We perform our combined chiral and continuum ex-
trapolation using the method of constrained curve fitting
[69]. Although we know that lattice data generated with
sufficiently small quark masses and fine lattice spacings,
and, in the case of the B ! �‘� form factor, sufficiently
low pion energies, must be described by lattice �PT, we do
not know precisely the range of validity of the effective
theory. Furthermore, the order in �PT to which we must
work and the allowed parameter values depend upon both
the quantity of interest and the size of the statistical errors.
We therefore need a fitting procedure that both incorpo-
rates our general theoretical understanding of the suitable
chiral effective theory and accounts for our limited knowl-
edge of the values of the low-energy constants and sizes of
the higher-order terms. Constrained curve fitting provides
just such a method.

Next-to-leading order �PT breaks down for pion ener-
gies around and above the kaon mass. Less than half of our
numerical form-factor data, however, is below this cutoff.
Therefore, although we do not expect NLO HMS�PT to
describe our data through momentum p ¼ 2�ð1; 1; 0Þ=L,
we cannot remove those points without losing the majority
of our data. Nor can we abandon the NLO HMS�PT
expressions for fk and f?, Eqs. (45) and (46), which are

the only effective field theory guides that we have for
extrapolating the numerical lattice form-factor data to the
continuum and physical quark masses. We therefore per-
form the continuum-chiral extrapolation using the full
NLO HMS�PT expressions for fk and f?, including the

1-loop chiral logarithms, plus additional NNLO analytic

terms to allow a good fit to the data through p ¼
2�ð1; 1; 0Þ=L. The NNLO terms smoothly interpolate be-
tween the region in which �PT is valid and the region in
which the pion energies are too large and the higher-order
chiral logarithms in E� can be approximated as
polynomials.
We express the analytic terms in the formulae for fk and

f?, Eqs. (45) and (46), as products of dimensionless ex-
pansion parameters

�ml
¼ 2�ml

8�2f2�
� 0:05–0:19; (47)

�a2 ¼
a2 ��

8�2f2�
� 0:03–0:09; (48)

�E�
¼

ffiffiffi
2

p
E�

4�f�
� 0:22–0:78; (49)

where �� is the average staggered taste splitting and we
show the range of values for each of these parameters
corresponding to our numerical lattice data. (Note that
we omit the ~p ¼ 2�ð1; 1; 1Þ=L data points from our chiral
fits because these would lead to �E�

* 1.) Because each of

the above expressions is normalized by the chiral scale

�� � 4�f�, the undetermined coefficients cð1Þk;?–c
ð5Þ
k;?

should be of Oð1Þ in these units. We therefore constrain

the values of the low-energy constants cð0Þk;?–c
ð5Þ
k;? in our fits

with Gaussian priors of width 2 centered about 0.
The statistical errors in the numerical lattice data come

from the 3-point fits described in the previous subsection.
In order to account for the correlations among the various
pion energies on the same sea-quark ensemble in the
chiral-continuum extrapolation, we preserve the bootstrap
distributions. We perform a separate correlated fit to each
of the 500 bootstrap ensembles in which we remake the full
bootstrap covariance matrix for each fit. We average the
68% upper and lower bounds on the form-factor distribu-
tions to determine the statistical and systematic errors in fk
and f? that are plotted in Fig. 7 and presented in Table II
below.
Because we do not know a priori how many terms are

necessary to describe the available lattice data, we begin
with strictly NLO fits using the formulae for fk and f? in

Eqs. (45) and (46). We fit the lattice data for fk and f?
separately even though the ratio of leading-order coeffi-

cients cð0Þ? =cð0Þk is predicted to be equal gB�B� to NLO in

�PT; this is because the value of gB�B� is known to only
�50% from phenomenology. We obtain a good fit of the
f? lattice data to the NLO expression without the inclusion
of higher-order NNLO terms. This is probably because the
shape of f? is dominated by the 1=ðE� þ��Þ behavior and
therefore largely insensitive to the other terms. We cannot,
however, obtain a good fit of fk to the strictly NLO
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expression, and must add higher-order terms in order to
obtain a successful fit. Specifically, NNLO analytic terms
proportional tomlE� and E3

� are both necessary to achieve
a confidence level better than 10%.

Although we could, at this point, choose to truncate the
HMS�PT extrapolation formulae to include only those
terms necessary for a good confidence level, we instead
include ‘‘extra’’ NNLO analytic terms to both the fk and

f? fits, constraining the values of their coefficients with
Gaussian priors of 0� 2. The introduction of more free
parameters increases the statistical errors in the extrapo-
lated values of the form factors; these larger errors reflect
the uncertainty in the size of the newly included higher-
order contributions. We continue to add higher-order ana-
lytic terms until the central values of the extrapolated form

factors stabilize and the statistical errors in the form factors
reach a maximum. This indicates that any further terms are
of sufficiently high order, that they do not affect the fit, and
can safely be neglected. We find that this occurs once the
extrapolation formulae for fk and f? contain all eight sea-

quark mass-independent NNLO analytic terms. The inclu-
sion of NNNLO analytic terms does not further increase
the size of the error bars.
Figure 7 shows the preferred constrained fits of fk

(upper plot) and f? (lower plot) versus E2
�, where both

the x and y axes are in r1 units.2 Each fit is to the NLO
HMS�PT expression, Eqs. (45) and (46), plus all sea-quark
mass-independent NNLO analytic terms. The square sym-
bols indicate fine lattice data, while the circles denote
coarse data. The six colored curves show the fit result
projected onto the masses and lattice spacings of the six
sea-quark ensembles; the red line should go through the red
circles, and so forth. The thick black curve shows the form
factor in the continuum at physical quark masses with
symmetrized bootstrap statistical errors.
We use functions and constraints based on HMS�PT to

perform the chiral-continuum extrapolation because we
know that HMS�PT is the correct low-energy effective
description of the lattice theory. Nevertheless, we must
compare various properties with theoretical expectations
in order to check for overall consistency. An essential first
test is that we can successfully fit the data with good
confidence levels and obtain low-energy coefficients that
are of the predicted size. We can also verify the conver-
gence of the series expansion by calculating the ratios of
the higher-order contributions to the leading-order form-
factor contributions

fNLOk
fLOk

��������E�¼500 MeV
� 47%;

fNLO?
fLO?

��������E�¼500 MeV
� 48%;

(50)

fNNLOk
fLOk

��������E�¼500 MeV
� 3%;

fNNLO?
fLO?

��������E�¼500 MeV
� 4%;

(51)

where we choose a nominal value of E� ¼ 500 MeV for
illustration because it is on the high end of the expected
range of validity of �PT. Finally, because the leading-order

coefficient cð0Þk is expected to be equal to �B � fB
ffiffiffiffiffiffiffi
mB

p
in

HM�PT, we can compare its value with that of �B deter-
mined from our preliminary decay constant analysis.

FIG. 7 (color online). Chiral-continuum extrapolation of fk
(upper) and f? (lower) using constrained NLO HMS�PT plus
all NNLO analytic terms with gB�B� ¼ 0:51 and r1 ¼ 0:311 fm.
The square symbols indicate a � 0:09 fm lattice data points,
while the circular symbols indicate a � 0:12 fm coarse data
points. The black curve is the chiral-continuum extrapolated
form-factor symmetrized bootstrap statistical errors only.

2As a cross-check of the constrained fits, we also perform
unconstrained fits of fk and f? with only the minimal number of
analytic terms needed for a good fit. The results are consistent,
but the unconstrained fit results have smaller statistical errors
because they include 6–8 fewer fit parameters.

JON A. BAILEY et al. PHYSICAL REVIEW D 79, 054507 (2009)

054507-14



Although the B-meson decay constant calculation uses the
same staggered gauge configurations, it employs different
heavy-light meson 2-point correlation functions with the
axial current, a different HMS�PT fit function, and differ-
ent perturbative renormalization factors, and is therefore
largely independent of the B ! �‘� semileptonic form-
factor calculation. For the preferred fk fit shown in Fig. 7,

we find cð0Þk ¼ 0:81� 0:07, where the errors are statistical

only. This is quite close to our current preliminary result,

r3=21 �B ¼ 0:92� 0:03 (statistical error only) [70,71], es-
pecially considering that the HMS�PT extrapolation for-
mula for fk neglects some of the Oð1=mbÞ contributions.

An interesting use of our numerical B ! �‘� form-
factor data is to determine the approximate value of the
B�-B-� coupling, gB�B�, from lattice QCD. For the pre-
ferred fits shown in Fig. 7, we find that the ratio of leading-
order coefficients is

gB�B� � cð0Þ?
cð0Þk

¼ 0:22� 0:07; (52)

and is independent of the choice for gB�B� in the chiral
logarithms within statistical errors. This determination
omits the Oð1=mbÞ corrections to the chiral logarithms in
the HMS�PT extrapolation formulae for fk and f?,
Eqs. (45) and (46), and neglects the difference between
�B and �B� ; we do not attempt to estimate the systematic
uncertainty introduced by these or other effects. The value
is lower than the determination of Stewart, gB�B� ¼ 0:51,
which comes from a combined analysis of several experi-
mental quantities, including the D�-meson decay width,
through Oð1=mcÞ in HM�PT [43]. It is consistent, how-
ever, with the range of values determined by the HPQCD
Collaboration, who allowed gB�B� to be a free parameter

in their chiral-continuum extrapolation and found 0<
gB�B� & 0:45 [33].

IV. ESTIMATION OF SYSTEMATIC ERRORS

In this section, we discuss all of the sources of system-
atic uncertainty in our calculation of the B ! �‘� form
factor fþðq2Þ. We present each error in a separate subsec-
tion for clarity. The value of the form-factor fþðq2Þ, along
with the total error budget, is given in Table II.

A. Chiral-continuum extrapolation fit ansatz

We use the method of constrained curve fitting to esti-
mate the effect of neglected higher-order terms in the
HMS�PT chiral-continuum extrapolation formulae. Our
fit procedure is described in detail in Sec. III C.
Therefore, the errors in fk and f? extrapolated to physical

quark masses and zero lattice spacing shown in Fig. 7
reflect both the statistical errors in the Monte Carlo data
and the systematic errors due to our limited knowledge of
the higher-order terms, which we specified with priors. We
do not need to include a separate systematic uncertainty
due to the choice of fit function, as would be the case had
we used an unconstrained fit with fewer terms.

B. gB�B� uncertainty

We fix the size of the B�-B-� coupling to gB�B� ¼ 0:51
in the coefficients of the chiral logarithms, while extrap-
olating to the physical light-quark masses and continuum.
Our choice is based upon the following considerations:
Because the coupling gB�B� is expected to be approxi-
mately equal to gD�D� due to heavy-quark symmetry, we
use the phenomenological value of the D�-D-� coupling
determined by Stewart in Ref. [43], which comes from a

TABLE II. Statistical and systematic error contributions to the B ! �‘� form factor. Each source of uncertainty is discussed in
Sec. IV. For each of the 12 q2 bins, the error is shown as a percentage of the total form factor, fþðq2Þ, which is given in the second row
from the top. Because the bootstrap errors in the form factor are asymmetric, the errors shown are the average of the upper and lower
bootstrap errors. In order to facilitate the use of our result, we also present the normalized statistical and systematic bootstrap
correlation matrices in Table IV and the total bootstrap covariance matrix in Table V.

q2 (GeV2) 26.5 25.7 25.0 24.3 23.5 22.8 22.1 21.3 20.6 19.8 19.1 18.4

fþðq2Þ 9.04 6.32 4.75 3.75 3.06 2.56 2.19 1.91 1.69 1.51 1.37 1.27

statisticsþ �PTð%Þ 24.4 18.5 13.5 9.6 7.1 6.3 6.5 6.9 7.2 7.5 8.2 9.8

gB�B� uncertainty 1.1 0.3 0.8 1.8 2.4 2.8 2.9 2.8 2.6 2.5 2.6 2.9

r1 0.4 0.7 0.9 1.1 1.2 1.3 1.4 1.4 1.5 1.5 1.4 1.4

m̂ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3

ms 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.1 1.2 1.3

mb 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Heavy-quark discretization 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

Nonperturbative ZV 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

Perturbative 
 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

u0 2.9 2.1 1.2 0.5 0.3 0.8 1.1 1.3 1.4 1.3 1.3 1.3

Finite volume 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Total systematics (%) 5.9 5.4 5.3 5.4 5.7 5.9 6.0 6.1 6.0 6.0 6.0 6.2
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combined analysis of several experimental quantities that
includes the D�-meson decay width [72]. This value is
presented without errors, and is an update of Stewart’s
earlier analysis in Ref. [73], which incorporates additional
experimental results. His earlier calculation finds a signifi-
cantly lower value of gD�D� ¼ 0:27þ0:04þ0:05

�0:02�0:02, where the

first errors are experimental and the second errors come
from an estimate of the sizes of the 1-loop counterterms
[73]. A more recent phenomenological determination of
the D�-D-� coupling by Kamenik and Fajfer, which also
includes up-to-date experimental data, improves upon the
analysis method of Stewart by including contributions
from both positive and negative parity heavy mesons in
the loops [74]. They find an even higher value of gD�D� ¼
0:66þ0:08

�0:06, where the uncertainty only reflects the error due

to counterterms. We therefore conclude that, although
recent experimental measurements of the D� width may
constrain the coupling [72] at tree-level, the size of gB�B� is
not well determined in the literature.

In order to determine the error in the form factor from
the uncertainty gB�B� we vary the parameter over a gen-
erous range. The smallest value of gB�B� that we have seen
in the literature is gD�D� ¼ 0:27 [73]. The largest is
gD�D� ¼ 0:67, which comes from a quenched lattice cal-
culation [75]. (There has not yet been an unquenched
‘‘2þ 1’’ flavor determination of gB�B�.) We therefore
vary gB�B� over the entire range from 0.27–0.67 and take
the largest difference from the preferred determination of
fþðq2Þ using gB�B� ¼ 0:51 as the systematic error due to
the uncertainty in the B�-B-� coupling. The lattice data is
largely insensitive to the value of gB�B� in the coefficient of
the chiral logarithms; all values of the parameter yield
similar fit confidence levels. The resulting systematic un-
certainty in fþðq2Þ is less than 3% for all q2 bins despite
varying gB�B� by almost 50%.

C. Scale (r1) uncertainty

We use the MILC Collaboration’s determination of the
scale from their calculation of f�, r1 ¼ 0:311 fm, to con-
vert between lattice and physical units [51]. The parameter
r1 enters the form-factor calculation in a number of places:
we use the PDG values of f� and ��

B in the chiral-
continuum extrapolation formulae [13], we set m� to the
PDG value in the resulting fit functions to determine the
form factors at the physical point, and we convert fk and

f? to physical units via r1 before combining them to
extract fþðq2Þ. An alternative determination using the
HPQCD Collaboration’s lattice data for the � 2S-1S [76]
splitting yields a result that is �2% larger, r1 ¼ 0:317 fm.
We therefore repeat the chiral-continuum extrapolation of
fk and f? using this higher value of r1, combine them into

the dimensionless form factor fþðq2Þ using this higher
value of r1, and take the difference from the preferred
form-factor result as the systematic error due to uncertainty
in the overall lattice scale. The difference ranges from 1–

1.5% for most q2 values. This is consistent with our naive
expectation that a �2% difference in r1 will result in a
�1% difference in fþðq2Þ because fk has dimensions of

GeV1=2 and f? has dimensions of GeV�1=2.

D. Light-quark mass ðm̂;msÞ determinations

We obtain the form factors fk and f? in continuumQCD

by setting the lattice spacing to zero and the light-quark
masses to their physical values in the HMS�PT expres-
sions, once the coefficients have been determined from fits
to the numerical lattice data. We use the most recent
calculations of the bare quark masses by the MILC
Collaboration from fits to light pseudoscalar meson masses

r1m̂� 103 ¼ 3:78ð16Þ; (53)

r1ms � 103 ¼ 102ð4Þ; (54)

where m̂ is the average of the up and down quark masses
and the quoted errors include both statistics and system-
atics [51]. We vary the bare light-quark mass, r1m̂, within
its stated uncertainty and take the maximal difference from
the preferred form-factor result to be the systematic error;
we find that the error is 0.3% or less for all values of q2. We
perform the same procedure for the bare strange quark
mass, and find that the resulting error ranges from
�0:5–1:5% over the various q2 bins.

E. Bottom quark mass (mb) determination

The value of the form factor fþðq2Þ depends upon the
b-quark mass, which we fix to its physical value through-
out the calculation. Specifically, we first determine the
value of the hopping parameter, �, in the SW action for
which the lattice kinetic mass agrees with the experimen-
tally measured Bs-meson mass. We then use this tuned �b

when calculating all of the 2- and 3-point heavy-light
correlators needed for the B ! �‘� form factor. With
our current tuning procedure we are able to determine �b

to�6% accuracy. This uncertainty in �b is conservative; it
is primarily due to poor statistics, and will decrease con-
siderably after the analysis of the larger data set that is
currently being generated.
The uncertainty in �b produces an uncertainty in the

form factor. We estimate this by calculating the form factor
fþ at two additional values of � (one above and one below
the tuned value) on the aml=ams ¼ 0:02=0:05 coarse en-
semble. This is sufficient because the heavy-quark mass-
dependence of the form factor is largely independent of the
sea-quark masses and lattice spacing. We find the largest
dependence upon �b at momentum ~p ¼ 2�ð1; 1; 0Þ=L,
shown in Fig. 8, for which a 6% uncertainty in �b produces
a 1.2% uncertainty in the form factor. We therefore take
1.2% to be the systematic error in fþðq2Þ due to uncer-
tainty in the determination of the b-quark mass.

JON A. BAILEY et al. PHYSICAL REVIEW D 79, 054507 (2009)

054507-16



F. Gluon and light-quark discretization errors

We estimate the size of discretization errors in the form
factor fþðq2Þ with power counting. We choose conserva-
tive values for the parameters that enter the estimates:� ¼
700 MeV and 	Vðq�Þ ¼ 1=3, which is a typical value on
the fine lattice spacing [57,62].

We calculate the B ! �‘� semileptonic form factor
using a one-loop Symanzik-improved gauge action for
the gluons [77–80] and the Asqtad-improved staggered
action for the light up, down, and strange quarks [81,82].
Because both the gluon and light-quark actions are Oða2Þ
improved, the leading discretization effects are of
Oð	sða�Þ2Þ. We parameterize these errors in the fit to
numerical lattice form-factor data by including analytic
terms proportional to a2 in the HMS�PT extrapolation
formulae for fk and f?. Because we only have data at

two lattice spacings, however, we do not include a separate
term proportional to	sða�Þ2 to account for the fact that	s

differs by a few percent between the lattice spacings. We
then remove the majority of light-quark and gluon discre-
tization effects from the final result by taking a ! 0.
Similarly, we identify and remove higher-order discretiza-
tion effects in the chiral-continuum extrapolation through
the NNLO analytic terms in the fit functions. The remain-
ing gluon and light-quark discretization errors are
negligible.

The calculation of the B ! �‘� form factor requires 2-
point and 3-point functions with nonzero momenta, which
introduces momentum-dependent discretization errors.
The leading p-dependent discretization error is of
Oð	sðapÞ2Þ. We parameterize these errors, up to variations
in 	s at the two lattice spacings, with the two NNLO
analytic terms proportional to a2E2

� and a2ml in the ex-

trapolation formulae for fk and f? and remove them by

taking the continuum limit of the resulting fit functions.
This also largely removes errors of Oð	2

sðapÞ2Þ. The re-
maining momentum-dependent discretization effects are of
Oð	sðapÞ4Þ. On the 283 fine lattices, 	sðapÞ4 ¼ 0:003 for
our highest-momentum data points with a ~p ¼
2�ð1; 1; 0Þ=28. Therefore, the uncertainty in fþðq2Þ due
to momentum-dependent discretization effects is negli-
gible compared with our other systematic errors.

G. Heavy-quark discretization errors

We use HQET as a theory of cutoff effects to estimate
the size of discretization errors due to use of the Fermilab
action for the heavy bottom quark. Because both the lattice
and continuum theories can be described by HQET, heavy-
quark discretization effects can be classified as a short-
distance mismatch of higher-dimension operators [36–38].
Each contribution to the error is given by [83]

error i ¼ j½Clati ðmQ;m0aÞ � Cconti ðmQÞ�hOiij; (55)

where Oi is an effective operator, and Clati ðmQ;m0aÞ and
Cconti ðmQÞ are the corresponding short-distance coefficients
when HQET is used to describe lattice gauge theory or
continuum QCD, respectively. The coefficient mismatch
can be written as

C lat
i ðmQ;m0aÞ � Cconti ðmQÞ ¼ adimOi�4fiðm0aÞ; (56)

and the relative error in our matrix elements can be esti-

mated by setting hOii ��dimOi�4
QCD . Then each contribution

to the error is

error i ¼ fiðm0aÞða�QCDÞdimOi�4; (57)

recovering the counting in powers of a familiar from
Symanzik, while maintaining the full m0a dependence.
The functions fi can be deduced from Refs. [35,84] and
are compiled in Appendix A. Adding all contributions of
Oð	saÞ and Oða2Þ from the action and the current, we
obtain a relative error of 2.84% (4.16%) for fk and 3.40%

(4.98%) for f? on the fine (coarse) lattices. We therefore
take 3.4% to be the error in fþðq2Þ due to heavy-quark
discretization effects.

H. Heavy-light current renormalization

We determine the majority of the heavy-light current
renormalization nonperturbatively. The dependence of Zbb

V

on the sea-quark masses and on the mass of the light
spectator quark in the 3-point correlator are both negli-
gible; the statistical error in Zbb

V is �1%. The dependence
of Zll

V on the sea-quark masses is also negligible, and the
statistical error in Zll

V is �1%. We therefore includeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1%2 þ 1%2
p Þ � 1:4% as the systematic uncertainty in

FIG. 8 (color online). Normalized form factor fþ at momen-
tum ~p ¼ 2�ð1; 1; 0Þ=L as a function of � on the aml=ams ¼
0:02=0:05 coarse ensemble. The central data point corresponds
to the tuned �b, and the thick red line shows a linear fit to the
three data points. The two dashed vertical lines indicate the
upper and lower bounds on �b.
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the form-factor fþðq2Þ due to the uncertainty in the non-
perturbative renormalization factors Zbb

V and Zll
V for all

values of q2.
We determine the remaining renormalization of the

heavy-light current using lattice perturbation theory. The
1-loop correction to f? is �3% on the fine ensembles and
�4% on the coarse ensembles. Because we calculate 
hl

V�

to Oð	sÞ, the leading corrections are of Oð	2
sÞ. We might

therefore expect the 2-loop corrections to 
hl
V�

to be a factor

of 	s smaller, or �1%. In order to be conservative, how-
ever, we take the entire size of the 1-loop correction on the
fine lattices, or 3%, as the systematic uncertainty in fþðq2Þ
due to higher-order perturbative contributions for all q2

bins.

I. Tadpole parameter (u0) tuning

In order to improve the convergence of lattice perturba-
tion theory, we use tadpole-improved actions for the glu-
ons, light quarks, and heavy quarks [47]. We take u0 from
the average plaquette for the gluon and sea-quark action
[18]. On the fine lattice, we make the same choice for the
valence quarks. For historical reasons, however, we use u0
determined from the average link in Landau gauge for the
valence quarks on the coarse ensembles. The difference
between u0 from the two methods is 3–4% on the coarse
ensembles. We must, therefore, estimate the error in the
form factor due to this poor choice of tuning.

The tadpole-improvement factor enters the calculation
of fþðq2Þ in several ways. The factor of u0 that enters the
normalization of the heavy Wilson and light staggered
quark fields cancels exactly between the h�jV�jBi lattice
matrix element and the nonperturbative renormalization

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zbb
V Zll

V

q
. The most significant effect of the mixed

u0 values is in the chiral-continuum extrapolation of fk and
f?. The different choices for valence and sea-quark actions
imply that the coarse lattice data is partially quenched. We
study this effect by performing the chiral extrapolation in
two ways: one assuming that both valence and sea quarks
have the mass of the sea quark and the other assuming that
both have the mass of the valence quark. This leads to a 3%
error in the highest q2 bin, and a�1–1:5% error in the bins
that affect the determination of jVubj. Most of the other
effects of changing u0 in the lattice action and current can
be absorbed into our estimate of the uncertainty from
higher-order perturbative corrections to 
hl

V , to discretiza-

tion errors, and to the normalization of the Naik term. All
but the last are already budgeted in Table II. The Naik term
in the Asqtad action ensures that the leading discretization
errors in the pion dispersion relation are Oð	sa

2p2Þ. We
therefore estimate the error in fþðq2Þ due to different Naik
terms in the valence and sea sectors to be equal to the
largest value of 	sa

2p2 on the coarse lattice times the ratio
of the Landau link over plaquette u0 cubed, or �0:2%.

We add the flat error from the Naik term to the bin-by-
bin error due to the light-quark mass used in the chiral
extrapolation in quadrature to obtain the total uncertainty.
Although our estimate is of necessity rather rough, we find
that the errors due to u0 tuning are much smaller than the
dominant errors in fþðq2Þ. Our error estimate is therefore
adequate for the determinations of the B ! �‘� form
factor and jVubj presented in this work.

J. Finite-volume effects

We estimate the uncertainty in the form factor fþðq2Þ
due to finite-volume effects using 1-loop finite volume
HMS�PT. The finite-volume corrections to the HMS�PT
expressions for fk and f? are given in Ref. [41] in terms of

integrals calculated in Ref. [85]. It is therefore straightfor-
ward to find the relevant corrections for our simulation
parameters. We find that the 1-loop finite-volume correc-
tions are well below a percent for all of our lattice data
points. Because finite-volume errors increase as the light-
quark mass decreases, they are largest on the aml=ams ¼
0:007=0:05 coarse ensemble. The biggest correction is to
f? at ~p ¼ 2�ð1; 1; 0Þ=L, and is 0.5%. We therefore take
this to be the uncertainty in fþðq2Þ due to finite-volume
errors for all q2 bins.

V. MODEL-INDEPENDENT DETERMINATION
OF jVubj

It is well established that analyticity, crossing symmetry,
and unitarity largely constrain the possible shapes of semi-
leptonic form factors [86–89]. In this section we apply
constraints based on these general properties to our lattice
result for the form factor fþðq2Þ and thereby extract a
model-independent value for the CKM matrix element
jVubj.
Until now the standard procedure used to extract jVubj

from B ! �‘� semileptonic decays has been to integrate
the form factor jfþðq2Þj2 over a region of q2, and then
combine the result with the experimentally measured de-
cay rate in this region:

�ðqminÞ
jVubj2

¼ G2
F

192�3m3
B

Z q2max

q2
min

dq2½ðm2
B þm2

� � q2Þ2

� 4m2
Bm

2
��3=2jfþðq2Þj2: (58)

The integration, however, necessitates a continuous pa-
rameterization of the form factor over the full range from
q2min to q2max.

In our earlier, preliminary unquenched analysis, we
determine fþðq2Þ by fitting the lattice data points to the
Bećirević-Kaidalov (BK) parameterization [90],

fþðq2Þ ¼ fþð0Þ
ð1� ~q2Þð1� 	~q2Þ ; (59)
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f0ðq2Þ ¼ fþð0Þ
ð1� ~q2=�Þ ; (60)

where ~q2 � q2=m2
B� . The BK ansatz contains three free

parameters and incorporates many of the known properties
of the form factor such as the kinematic constraint at q2 ¼
0, heavy-quark scaling, and the location of the B� pole. The
HPQCD Collaboration instead uses the four-parameter
Ball-Zwicky (BZ) parameterization [91], which is the
same as the BK function in Eq. (59) plus an additional
pole to capture the effects of multiparticle states. In both
cases, however, the choice of fit function introduces a
systematic uncertainty that is difficult to quantify.

It is likely the BK and BZ parameterizations can be
safely used to interpolate between data points, whether
they be at high q2 from lattice QCD or at low q2 from
experiment. It is less clear, however, how well these ansa-
tze can be trusted to extrapolate the form-factor shape
beyond the reach of the data points. Furthermore, compari-
sons of lattice and experimental determinations of BK or
BZ fit parameters are not necessarily meaningful. For
example, if the slope parameters 	 from experiment and
lattice QCD were found to be inconsistent, we would not
know whether theory and experiment disagree, or whether
the parameterization is simply inadequate. A parameteri-
zation that circumvents this issue is therefore desirable. In
this work we pursue an analysis based on the model-
independent z parameterization, which is pedagogically
reviewed in Ref. [87].

A. Analyticity, unitarity, and heavy-quark constraints
on heavy-light form factors

All form factors are analytic functions of q2 except at
physical poles and threshold branch points. In the case of
the B ! �l� form factors, fðq2Þ is analytic below the B�
production region except at the location of the B� pole. The
fact that analytic functions can always be expressed as
convergent power series allows the form factors to be
written in a particularly useful manner.

Consider mapping the variable q2 onto a new variable, z,
in the following way:

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2=tþ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t0=tþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2=tþ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t0=tþ

p ; (61)

where tþ � ðmB þm�Þ2, t� � ðmB �m�Þ2, and t0 is a
free parameter. Although this mapping appears compli-
cated, it actually has a simple interpretation in terms of
q2; this transformation maps q2 > tþ (the production re-
gion) onto jzj ¼ 1 and maps q2 < tþ (which includes the
semileptonic region) onto real z 2 ½�1; 1�. In terms of z,
the form factors have a simple form:

fðq2Þ ¼ 1

Pðq2Þ�ðq2; t0Þ
X1
k¼0

akðt0Þzðq2; t0Þk; (62)

where the Blaschke factor Pðq2Þ is a function that contains
subthreshold poles and the outer function �ðq2; t0Þ is an
arbitrary analytic function (outside the cut from tþ < q2 <
1) whose choice only affects the particular values of the
series coefficients ak.
For the case of the B ! �‘� form factor fþðq2Þ, the

Blaschke factor Pþðq2Þ ¼ zðq2; m2
B� Þ accounts for the B�

pole. In this work we use the same outer function as in
Ref. [43]:

�þðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

96��ð0Þ
J

vuut ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ � t0
p Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

q

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t�

p Þ3=2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

q
þ ffiffiffiffiffi

tþ
p Þ�5

� ðtþ � q2Þ
ðtþ � t0Þ1=4

; (63)

where �ð0Þ
J is a numerical factor that can be calculated via

the operator product expansion [88,92]. This choice of
�þðq2; t0Þ, when combined with unitarity and crossing-
symmetry, leads to a particularly simple constraint on the
series coefficients in Eq. (62). Although the t dependence
of Eq. (63) appears complicated, it is designed so that the
sum over the squares of the series coefficients is t inde-
pendent:

X1
k¼0

a2k ¼
1

2�i

I dz

z
jPðzÞ�ðzÞfðzÞj2 � A; (64)

where the value of the constant A depends upon the choice

of �ð0Þ
J in Eq. (63). Because the decay process B ! �‘� is

related to the scattering process ‘� ! B� by crossing
symmetry, the sum of the series coefficients is bounded
by unitarity, i.e., the fact that the production rate of B�
states is less than or equal to the production of all final
states that couple to the b ! u vector current. In particular,

if one chooses the numerical factor �ð0Þ
J to be equal to the

appropriate integral of the inclusive rate ‘� ! Xb, the sum
of the coefficients is bounded by unity:

XN
k¼0

a2k & 1; (65)

where this constraint holds for any value of N and the ‘‘&’’

symbol indicates higher-order corrections to �ð0Þ
J in 	s and

the operator product expansion.
Such higher-order corrections turn out to be negligible

for the B ! �‘� form factor because the bound in Eq. (65)
is far from saturated, i.e., the sizes of the coefficients turn
out to be much less than one. Becher and Hill [93] have
pointed out that this is due to the fact that the b-quark mass
is so large. In the heavy-quark limit, the leading contribu-
tions to the integral in Eq. (64) are of Oð�3=m3

bÞ, where �
is a typical hadronic scale. Assuming that the ratio
�=mb � 0:1, the heavy-quark bound on the ak’s is approxi-
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mately 30 times more constraining than the bound from
unitarity alone:

XN
k¼0

a2k �
�
�

mB

�
3 � 0:001: (66)

We point out that the authors of Ref. [45] have recently
proposed a slightly different parameterization of the B !
�‘� form factor with a simpler choice of outer function,
� ¼ 1:

fþðq2Þ ¼ 1

1� q2=m2
B�

X1
k¼0

bkðt0Þzðq2; t0Þk: (67)

This choice enforces the correct scaling behavior,
fþðq2Þ � 1=q2 as q2 ! 1. It leads, however, to a more
complicated constraint on the series coefficients:

XN
j;k¼0

Bjkbjbk & 1; (68)

where the elements of the symmetric matrix Bjk are cal-

culable functions of t0. Because B ! �‘� semileptonic
decay is far from q2 ! 1, and because the unitarity bound
is so far from being saturated, the choice of outer function
should make a negligible impact on the resulting determi-
nation of jVubj. We therefore use the more standard outer
function given in Eq. (63) because the constraint in
Eq. (65) is independent of the number of terms in the
power series, and is therefore simpler to implement.

The free parameter t0 can be chosen to make the maxi-
mum value of jzj as small as possible in the semileptonic
region; we choose t0 ¼ 0:65t� as in Ref. [43]. For B !
�l� semileptonic decays this maps the physical region
onto

0< t < t� � 0:34< z < 0:22: (69)

The bound on the coefficients in the z expansion combined
with the small numerical values of jzj in the physical
region ensures that one needs only the first few terms in
the z expansion to accurately describe the form-factor
shape. Moreover, as the precision of both the lattice cal-
culations and experimental measurements improve, one
may easily include higher-order terms as needed.

B. Determination of jVubj using z parameterization

In 2007 the BABAR Collaboration published a measure-
ment of the shape of the B ! �‘� semileptonic form
factor with results for 12 separate q2 bins between q2min �
1 GeV2 and q2max � 24 GeV2 [42]. This suggests that lat-
tice QCD calculations are now needed primarily to provide
a precise form-factor normalization at one value of q2 in
order to determine jVubj. The minimal error in jVubj can, of
course, still be attained by using all of the available infor-
mation on the form-factor shape and normalization, pro-

vided that one analyzes the data in a model-independent
way.
Because as many terms can be added as are needed to

describe the B ! �‘� form factor to the desired accuracy,
use of the convergent series expansion allows for a sys-
tematically improvable determination of jVubj. We fit our
lattice numerical Monte Carlo data and the 12-bin BABAR
experimental data together to the z expansion, leaving the
relative normalization factor jVubj as a free parameter to be
determined by the fit. In this way we determine jVubj in an
optimal, model-independent way.
We first fit the lattice numerical Monte Carlo data and

the 12-bin BABAR experimental data separately to the z
expansion in order to check for consistency. We use
Gaussian priors with central value 0 and width 1 on each
coefficient in the z expansion to impose the unitarity con-
straint. Although this manner of constraining the coeffi-
cients is less stringent than the strict bound given in
Eq. (65), the choice does not matter because the unitarity
bound is far from saturated and the individual coefficients
all turn out to be much less than 1. We obtain identical fit
results even when the coefficients are completely
unconstrained.
The left-hand plot in Fig. 9 shows the BABAR measure-

ment of the B ! �‘� semileptonic form factor, fþðq2Þ
[42]. The right-hand plot shows the same data multiplied
by the functions Pþðq2Þ and �þðq2; t0Þ and plotted versus
the variable z. After remapping from q2 to z there is almost
no curvature in the experimental data. This indicates that
most of the curvature in the data is due to well-understood
QCD effects that are parameterized by the functions
Pþðq2Þ and �þðq2; t0Þ. Consequently, the experimental
data is well described by a normalization (a0) and slope
(a1=a0), as shown in Fig. 9. The slope of the BABAR
experimental B ! �‘� form-factor data is

a1
a0

¼ �1:60� 0:26: (70)

If one includes a curvature term in the z fit, the coefficient
a2 is poorly determined, but is found to be negative at
�1:5�. The value of a1 is consistent with the result of the
linear fit.
Figure 10 shows the lattice determination of the B !

�‘� semileptonic form factor, fþ vs q2 (left plot) and the
remapped form factor, Pþ�þfþ vs z (right plot). As is the
case for the experimental data, the shape of the lattice form
factor is less striking after taking out the B� pole and other
known QCD effects. When the lattice calculation of the
form factor is fit to the z parameterization, however, it
determines both a slope and a curvature. One cannot, in
fact, successfully fit the lattice data without including a
curvature term. The slope and curvature of the lattice
determination of the B ! �‘� form factor are

a1
a0

¼ �1:75� 0:91; (71)
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a2
a0

¼ �5:22� 1:39: (72)

The above uncertainties are the standard errors computed
from the inverse of the parameter Hessian matrix that result
from a fit using the full covariance matrix determined from
the bootstrap distributions of chiral-continuum extrapo-
lated values of fk and f?, including systematics.

Because the shapes of the lattice calculation and experi-
mental measurement of the form factor are consistent, we
now proceed to fit them simultaneously to the z expansion
and determine jVubj. The numerical lattice and measured

experimental data are independent, so we construct a
block-diagonal covariance matrix, where one block is the
total lattice error matrix and the other is the total experi-
mental error matrix. The combined fit function includes the
series coefficients (ak’s) plus an additional parameter for
the relative normalization between the lattice and experi-
mental results (jVubj). In order to account for the system-
atic uncertainty in jVubj due to poorly constrained higher-
order terms in z, we continue to add terms in the series until
the error in jVubj reaches a maximum. This occurs once we
include the term proportional to z3. The resulting combined

FIG. 10 (color online). Lattice calculation of the B ! �l� form factor. The left plot shows fþ vs q2, while the right plot shows
Pþ�þfþ vs z. The inner error bars indicate the statistical error, while the outer error bars indicate the sum of the statistical and
systematic added in quadrature. A 3-parameter z fit is needed to describe the lattice data with a good �2=d:o:f:

FIG. 9 (color online). Experimental data for the B ! �l� form factor times the CKM element jVubj from the BABAR Collaboration
[42]. The left plot shows jVubj � fþ versus q2, while the right plot shows jVubj � fþ multiplied by the functions Pþ�þ and plotted
against the new variable z. Both the 2-parameter fit (dashed blue line) and 3-parameter fit (solid red curve) have good �2=d:o:f:’s.
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z fit is shown in Fig. 11, and the corresponding fit parame-
ters are

jVubj � 103 ¼ 3:38� 0:36; (73)

a0 ¼ 0:0218� 0:0021; (74)

a1 ¼ �0:0301� 0:0063; (75)

a2 ¼ �0:059� 0:032; (76)

a3 ¼ 0:079� 0:068: (77)

The values of the coefficients are all much smaller than 1,
as expected from heavy-quark power-counting. The sum of
the squares of the coefficients is

P
a2k ¼ 0:011� 0:012,

and is consistent with the prediction of Becher and Hill
within uncertainties in the series coefficients and in the
choice of the hadronic scale in Eq. (66) [93].

By combining all of the available numerical lattice
Monte Carlo data and 12-bin BABAR experimental data
for the B ! �‘� form factor in a simultaneous fit we are
able to determine jVubj to �11% accuracy. This error is
independent (within & 0:5%) of the choice of the parame-
ter t0 used in the change of variables from q2 to zðq2; t0Þ
and in the outer function �þðq2; t0Þ. In order to demon-
strate the advantage of the combined fit method, we com-
pare the error in jVubj given in Eq. (73) with that obtained
from separate z fits of the lattice and experimental data. A z
fit to the 12-bin BABAR experimental data alone deter-
mines the normalization aexp0 to �8%, while a z fit to our

numerical lattice data determines alat0 to �14%. Thus,

separate fits lead to a determination of jVubj � aexp0 =alat0
with an approximately 16% total uncertainty.3 The com-
bined fit yields a significantly smaller error and is thus
preferred.
When the numerical lattice data and experimental data

are fit simultaneously, utilizing all of the available data
points is of secondary importance for reducing the total
uncertainty in jVubj. For example, we can evaluate the
importance of the low q2 experimental points to the ex-
traction of jVubj by removing them from the combined z fit.
Including only the three experimental data points with
q2 > 18 GeV2, we find a consistent value of jVubj with
only a �1% larger uncertainty. Similarly, we can evaluate
the importance of having many lattice data points, rather
than only a single point, by using only the most precise
lattice point with a total error of �9%. This allows the
form-factor shape to be completely determined by the

FIG. 11 (color online). Model-independent determination of jVubj from a simultaneous fit of lattice and experimental B ! �‘�
semileptonic form-factor data to the z parameterizaton. The left plot shows Pþ�þfþ vs z, while the right plot shows fþ vs q2.
Inclusion of terms in the power-series through z3 yields the maximum uncertainty in jVubj; the corresponding 4-parameter z fit is given
by the red curve in both plots. The circles denote the Fermilab-MILC lattice data, while the stars indicate the 12-bin BABAR
experimental data, rescaled by the value of jVubj determined in the simultaneous z-fit.

3Because the values of the coefficients of the power series in z
depend upon the choice of the parameter t0 in Eqs. (61)–(63), we
could, in principle, choose a different value of t0 in order to
minimize the error in either a

exp
0 or alat0 . For example, use of t0 ¼

22:8 GeV2 reduces the uncertainty in the lattice normalization
because the error in the lattice form factor is smallest at this q2

value. Use of t0 ¼ 22:8 GeV2 greatly increases the uncertainty
in the experimental normalization, however, because the experi-
mental data is poorly determined at large values of q2.
Ultimately, this choice of t0 leads to an even worse determination
of jVubj than from our standard choice of t0 ¼ 0:65t�. Although
we did not attempt to determine the value of t0 that minimizes
the total error in jVubj, the errors resulting from separate fits were
greater than that obtained with the simultaneous fit for all values
of t0 that we tried.
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experimental data. We find a consistent value of jVubj but
with an even larger error of �13%. We therefore conclude
that combining all of the numerical lattice data with all of
the experimentally measured BABAR data minimizes the
total uncertainty in jVubj. Because the small error in our
final determination of jVubj is primarily due to the power of
the combined z-fit method, one could easily use the pro-
cedure outlined in this section to improve the exclusive
determination of jVubj from existing lattice QCD calcula-
tions of the B ! �‘� form factor such as that by the
HPQCD Collaboration [33].

VI. RESULTS AND CONCLUSIONS

Combining our latest unquenched lattice calculation of
the B ! �‘� form factor with the 12-bin BABAR experi-
mental data, we find the following model-independent
value for jVubj4:

jVubj � 103 ¼ 3:38� 0:36: (78)

The total error is�11%, and it is nontrivial to separate the
error precisely into contributions from statistical, system-
atic, and experimental uncertainty because of the com-
bined z-fit procedure used. If we assume, however, that
the error in jVubj is dominated by the most precisely
determined lattice point (which is not quite true, as shown
in the previous section), we can estimate that the contri-
butions are roughly equally divided as �6% lattice statis-
tical, �6% lattice systematic, and �6% experimental.

Our result is consistent with, although slightly lower
than, our earlier, preliminary determination of jVubj. The
reduction in central value is primarily due to a change in
the lattice determination of the form factor, not the proce-
dure used to determine jVubj. Because our new analysis
uses a second lattice spacing, we are able to take the
continuum limit of the form factor. We find that the con-
tinuum extrapolation increases the overall normalization of
fþðq2Þ, and hence decreases the value of jVubj. Our errors
are smaller than those of previous exclusive determinations
primarily because we have reduced the size of the discre-
tization errors, which are significantly smaller than in the
previous Fermilab-MILC calculation (� 7% ! 3%) be-
cause of the additional finer lattice spacing.

Our new result is �1–2� lower than most inclusive
determinations of jVubj, which typically range from 4:0�
4:5� 10�3 [32]. Much of the variation among the inclu-
sive values is due to the choice of input parameters—in

particular that of the b-quark mass [94]. The recent deter-
mination of mb by Kühn, Steinhauser, and Sturm using
experimental data for the cross section for eþe� ! had-
rons in the bottom threshold region yields the value of mb

to percent-level accuracy [95], and is consistent with the
PDG average [13]. Neubert has shown, however, that an
updated extraction of mb from fits to B ! Xc‘� moments
using only the theoretically cleanest channels (excluding
b ! Xs�) results in a larger b-quark mass and hence
smaller inclusive value of jVubj, thereby reducing the ten-
sion between inclusive and exclusive determinations [96].
Our result is consistent with the currently preferred

values for jVubj determined by the global CKM unitarity
triangle analyses of the CKMfitter Collaboration, jVubj �
103 ¼ 3:44þ0:22

�0:17 [97], and UTFit Collaboration, jVubj �
103 ¼ 3:48� 0:16, [98]. Further reduction in the errors
is therefore essential for a more stringent test of the CKM
framework and a more sensitive probe of physics beyond
the standard model.
The dominant uncertainty in our lattice calculation of

the B ! �‘� form factor comes from the statistical errors
in the 2-point and 3-point correlations. This error can be
reduced in a straightforward manner with use of an im-
proved source for the pion and/or additional gauge con-
figurations. The statistical errors in the nonperturbative
renormalization factors Zbb

V and Zll
V can be brought to

below a percent in the same way. The chiral-continuum
extrapolation error, which is inextricably linked to the
statistical errors in the correlation functions, can also be
improved by simulating at more light-quark masses and an
additional finer lattice spacing of a� 0:06 fm. Presumably
a better constrained chiral and continuum extrapolation
will reduce the size of other q2-dependent errors such as
those from gB�B�, r1, and the light-quark masses by some
unknown amount as well. Use of a finer lattice with a�
0:06 fm will further decrease the momentum-dependent
and heavy-quark discretization errors, which we now esti-
mate with power counting. The extraction of jVubj can also
be improved by including more experimental measure-
ments of the B ! �‘� branching fraction. This, however,
will require understanding the correlations among the vari-
ous systematic uncertainties. Given these refinements of
the current calculation, an even more precise, model-
independent value of jVubj can be obtained in the near
future.
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APPENDIX A: ESTIMATE OF HEAVY-QUARK
DISCRETIZATION ERRORS

In this appendix we collect the short-distance functions
fi used to estimate the heavy-quark discretization effects.
For more background, see Refs. [35–38,83,84].

1. Oða2Þ errors
We start with these because explicit expressions for the

functions fiðm0aÞ are available.

a. Oða2Þ errors from the Lagrangian

There are two bilinears, �h ~D 	 ~Eh and �hi ~	 	 ½ ~D� ~E�h,
and many four-quark operators. At tree level the coeffi-
cients of all four-quark operators vanish and the coeffi-
cients of the two bilinears are the same. The mismatch
function is given by

fEðm0aÞ ¼ 1

8m2
Ea

2
� 1

2ð2m2aÞ2
: (A1)

Using explicit expressions for 1=m2 [35] and 1=m2
E [84],

one finds

fEðm0aÞ ¼ 1

2

�
cEð1þm0aÞ � 1

m0að2þm0aÞð1þm0aÞ �
1

4ð1þm0aÞ2
�
:

(A2)

We use cE ¼ 1 in our numerical simulations.

b. Oða2Þ errors from the current

There are three terms with nonzero coefficients, �q� ~D2h,

�q�i ~	 	 ~Bh, and �q� ~	 	 ~Eh, which can be deduced from
Eq. (A17) of Ref. [35]. Their coefficients can be read off
from Eqs. (A19) [35]. When cB ¼ rs the first two share the
same coefficient:

fXðm0aÞ ¼ 1

8m2
Xa

2
� 
d1ð1þm0aÞ

m0að2þm0aÞ �
1

2ð2m2aÞ2
;

¼ 1

2

�
1

ð2þm0aÞð1þm0aÞ þ
1

2ð1þm0aÞ
� 1

4ð1þm0aÞ2
� 1

ð2þm0aÞ2
�
;

¼ 1

2

�
1

2ð1þm0aÞ �
�

m0a

2ð2þm0aÞð1þm0aÞ
�
2
�
;

(A3)

where the last term on the second line comes from using

the tree-level d1. For the third operator, �q� ~	 	 ~Eh,

fYðm0aÞ ¼ 1

2

�
d1
m2a

� 
ð1� cEÞð1þm0aÞ
m0að2þm0aÞ

�
;

¼ 2þ 4m0aþ ðm0aÞ2
4ð1þm0aÞ2ð2þm0aÞ2

; (A4)

where the last line reflects the choices made for cE and d1.

2. Oð�saÞ errors
Because we improve both the action and current, the

mismatch functions fiðm0aÞ start at order 	s, and we do
not have explicit expressions for them. (The calculation of
these functions would be needed to match at the one-loop
level.) So we shall take unimproved tree-level coefficients
as a guide to the combinatoric factors and consider asymp-
totic behavior in the limits m0a ! 0, 1.

a. Oð	saÞ errors from the Lagrangian

There are two bilinears, the kinetic energy �h ~D2h and the

chromomagnetic moment �hi ~	 	 ~Bh. There is no mismatch
in the coefficient of the kinetic energy, by assumption,
since we identify the kinetic mass with the heavy-quark
mass. This tuning is imperfect, but the associated error is
budgeted in Sec. IVE.
At the tree level the chromomagnetic mismatch is

f½0�B ðm0aÞ ¼ cB � 1

2ð1þm0aÞ : (A5)

This has the right asymptotic behavior in both limits, so our
ansatz for the one-loop mismatch function is simply

f½0�B ðm0aÞ ¼ 	s

2ð1þm0aÞ ; (A6)

and errorB is this function multiplied by a�.
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b. Oð	saÞ errors from the current

There is only one correction at tree level, but more
generally there are two for the temporal current and four
for the spatial current. (See Eqs. (2.27)–(2.32) of Ref. [37].)

The tree-level mismatch function ends up being the
same as d1:

f½0�3 ðm0aÞ ¼ m0a

2ð2þm0aÞð1þm0aÞ : (A7)

It is, however, an accident that it vanishes as m0a ! 0.
Therefore, we instead take

f3ðm0aÞ ¼ 	s

2ð2þm0aÞ ; (A8)

which has the right asymptotic behavior.

3. Numerical estimates

The relative errors due to mismatches in the heavy-quark
Lagrangian and current on the MILC coarse and fine
ensembles are tabulated in Table III. At the fine lattice
spacing we take the typical 	Vðq�Þ to be 1=3, and we use
one-loop running to obtain 	Vðq�Þ at the coarse lattice

spacing. The contribution errorY from the ~	 	 ~E error
in the current is so small both because cE ¼ 1 in our
simulation and because d1 is small. Adding the individual
errors given in Table III in quadrature, and taking into
account multiple contributions of the same size, we find
the total error to be 2.84% (4.16%) for fk and 3.40%

(4.98%) for f? on the fine (coarse) lattices.

APPENDIX B: STATISTICAL AND SYSTEMATIC
ERROR MATRICES

In this appendix we present the normalized statistical
and systematic bootstrap correlation matrices for the

TABLE III. Relative error from mismatches in the heavy-
quark Lagrangian and current for the bottom quark with � ¼
700 MeV. To obtain the totals given in the text, E and X are
counted twice, and 3 is counted twice for fk and 4 times for f?.
Entries are in percent.

a (fm) 	Vðq�Þ m0a B 3 E X Y

0.09 0.33 2.018 1.76 1.32 0.28 0.80 0.24

0.12 0.41 2.617 2.48 1.94 0.39 1.26 0.33

TABLE IV. Normalized statistical (upper) and systematic (lower) bootstrap correlation matrices for the B ! �‘� form factor,
fþðq2Þ. These should be combined with the values of fþðq2Þ presented in Table II to reconstruct the full correlation matrices.

q2 (GeV2) 26.5 25.7 25.0 24.3 23.5 22.8 22.1 21.3 20.6 19.8 19.1 18.4

26.5 1.00 0.99 0.97 0.88 0.66 0.29 �0:01 �0:16 �0:19 �0:14 �0:04 0.05

25.7 0.99 1.00 0.99 0.92 0.73 0.38 0.07 �0:09 �0:13 �0:09 0.00 0.08

25.0 0.97 0.99 1.00 0.97 0.82 0.51 0.21 0.04 �0:02 0.01 0.07 0.13

24.3 0.88 0.92 0.97 1.00 0.93 0.69 0.42 0.25 0.18 0.17 0.20 0.21

23.5 0.66 0.73 0.82 0.93 1.00 0.91 0.72 0.56 0.48 0.43 0.39 0.32

22.8 0.29 0.38 0.51 0.69 0.91 1.00 0.94 0.85 0.77 0.69 0.58 0.42

22.1 �0:01 0.07 0.21 0.42 0.72 0.94 1.00 0.98 0.92 0.84 0.69 0.48

21.3 �0:16 �0:09 0.04 0.25 0.56 0.85 0.98 1.00 0.98 0.92 0.78 0.55

20.6 �0:19 �0:13 �0:02 0.18 0.48 0.77 0.92 0.98 1.00 0.97 0.86 0.66

19.8 �0:14 �0:09 0.01 0.17 0.43 0.69 0.84 0.92 0.97 1.00 0.95 0.80

19.1 �0:04 0.00 0.07 0.20 0.39 0.58 0.69 0.78 0.86 0.95 1.00 0.94

18.4 0.05 0.08 0.13 0.21 0.32 0.42 0.48 0.55 0.66 0.80 0.94 1.00

q2 (GeV2) 26.5 25.7 25.0 24.3 23.5 22.8 22.1 21.3 20.6 19.8 19.1 18.4

26.5 1.00 0.98 0.95 0.89 0.85 0.88 0.9 0.91 0.91 0.92 0.91 0.90

25.7 0.98 1.00 0.98 0.92 0.87 0.87 0.88 0.89 0.90 0.91 0.9 0.88

25.0 0.95 0.98 1.00 0.97 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.94

24.3 0.89 0.92 0.97 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.97

23.5 0.85 0.87 0.94 0.99 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.98

22.8 0.88 0.87 0.94 0.99 0.99 1.00 1.0 1.00 0.99 0.99 0.99 0.99

22.1 0.90 0.88 0.94 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

21.3 0.91 0.89 0.94 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

20.6 0.91 0.90 0.95 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

19.8 0.92 0.91 0.95 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

19.1 0.91 0.9 0.95 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

18.4 0.90 0.88 0.94 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
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B ! �‘� form factor, fþðq2Þ, which were used in our
model-independent determination of jVubj. In order to

facilitate the use of our result, we also show the resulting
total covariance matrix.
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