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Monte Carlo risk management
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F Abstract

In this paper we propose a Monte Carlo based approach to Risk Management, Our

bject to random uncorrelated losses under very

is zero.

Discrete losses due to internal fraud (i.
I accord) for a particular de
application [1].

Our approach is based on the following steps: 1) model the time distribution and
the severity distribution of losses; 2) simulate possible future scenarios compatible
with the observed time and severity distributions; 3) compute the 99.9% VaR as
 the monetary amount that is greater than the total loss in 99.9% of the si
scenarios.

Notice that our approach is free from bias or assumptions about the distribution

of the total loss. The validity of the assumptions a), b) and ¢) can be verified
directly from the data, as we show in the example of section 3.

mulated
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In the next section of this paper we present the general approach and provide
examples of distribution functions that can be used to model the time distribution
and the severity distribution of losses.

In the third section we provide an example of application. We build 3
hypothetical portfolio of stocks and compute the 99.9% VaR due exclusively to
mini-crashes. In the example we define a mini-crash as the event when all stocks
considered move simultaneously downward. We stress again that our method ig
very general and can be applied seamlessly to any portfolio for any quantifiable
definition of crashes [2] (as long as they can be identified as discrete events),
as well as to the analysis of other types of losses (for example Operational Risk
losses).

We want to stress that in the cases examined here, usual analytical formulas for
computing the VaR without performing a simulation does not apply because the
distribution of the total loss over a finite period of time is not Gaussian.

2 Model

Our approach is based on the following assumptions: o

a) loss events are independent.
b) the number of loss events occurring in any time interval AT is independent of

the number of loss events occurring before the time interval considered;
c) the probability of two events occurring at exactly same time is zero.

The consequence of assumptions a), b) and c) is that we can separately
model the frequency distribution of losses and the severity distribution of losses,
More specifically, assumptions b) and c) indicate that the process underlying the
frequency distribution of losses is a Poisson process. &

With the above assumptions, our approach requires the following steps that are
described in detail in the following subsections:

1. Model the time distribution and severity distribution of losses separately; |

2. Simulate a large set of possible future scenarios compatible with the
observed time and severity distributions;

3. Compute the 99.9% VaR as the monetary amount that is greater than th
total loss in 99.9% of the simulated scenarios. '

2.1 Modeling time and severity distributions

Each loss event is characterized by the time when the event occurs, 7}, and by th
severity of the loss, S;. In the example below we assume 7 is measured in da
and .S; is measured in dollars. We also assume that losses are sorted by time s0 that
T; < Ty+1. We model the time distribution of {7}} and {S;} separately.

As consequence of assumptions a), b) and c), the process underlying the
frequency distribution of losses is a Poisson process. This means that the numoe:
of events occurring in any finite time frame 7" follows the Poisson distribution

WIT Transactions on Modelling and Simulation, Vol 43, © 2006 WIT Press
www.witpress.com, ISSN 1743-355X (on-line)




Computational Finance and its Applications I1 385

L e A T A e A s

ide also means that the distribution of the time intervals between subsequent losses,
on =T - Tiis exponential
5 p(t) = Ae~M (1
t i .
-k(s) where ) is one of the parameter of oy model and it equals the average number :
' is of events per unit of time (per day). It can be Mmeasured from the data as Fi
Slg 1 <=1 -1
S)v A = E t -1 . e T - T i
sk ( ”) N -1 fz_; ( i+1 :) (2) i
or : where IV is the number of historical Joss events.
he Modeling the Severity distribution s 5 mare difficult task and it depends on
the data set at hand. Some general characteristjcs are that losses are always
positive and can be arbitrarily large or small, therefore we expect the underlying i
distribution to be appreciatively log-normal. In the most general case, consistently
with extreme vajye theory [3-5], we €Xpect the presence of 3 fat tail for high
losses, as observed in [1,6]. A fat tai] is characterized by an inverse polynomial
behavior as Opposed to an exponentia behavior as for 4 normal or lognormal
_ distribution. The natyra choice for modeling this fat taj] js therefore a generalized
L  Pareto distribution (GPD),
”;f Our approach consists of modeling the severity distribution using the following
£ distribution function
1 o a— ;)2
y p(z) = ab(z - IO)EE— ez abf(zy — z)(z + e)=8 (3)
e: which is discussed in detail in Appendix A. This distribution is exactly log-normal
for z < To, exactly GPD for z ~ g,
e

and it is continuous and differentiable

everywhere, It reduce I'Zo — oo and 1o a GPD for 5 = 0.

It depends on only fo

§ to a log-normal fo
ur parameters: 4,

[

av

i ssions are reported in
Appendix A,

Fig. (1) shows various plots of p(z) ponding cumulative
distribution functions F(x) (right) in logarithmi i

7, Zo, and 3. While )\
measure via a fit of the
erity data.

ﬁ WIT Transactions on Modelling and Simula

tion, Vol 43, © 2006 WIT Press
wWw.wilpreSs.com, ISSN 1743-355% (on-li

ne)




386 Computational Finance and its Applications II

-4 -z 2 f - - : : 4

Figure 1: Log-plot of p(z) (left) and F(z) = I plz)dz (right) for different
values of 3 = 1.5,2,25atu = 0,0 = 1,and zy = 1 fixed, compared
with a Gaussian distribution.

covers a finite time interval from 0 (today) until some future time T'. This is the
time over which we wish to compute the Value-at-Risk. Each simulated scenario is
characterized by a set of simulated loss events occurring within the time interval T,

The simulation of each simulated scenario starts at time 0 and recursively
proceeds to simulate the next loss event. The next loss event will occur in time ¢
and will have a severity s. ¢ and s are random numbers generated according to the
frequency distribution and the severity distribution respectively. The simulation of
each scenario proceeds until a loss event occurs beyond the time interval T being
considered.

Multiple scenarios are simulated using the method described above. Then,
for each simulated scenario &, we compute the total loss Ly by summing the
discounted s losses occurring under scenario & within the considered time interval.

2.3 Computing the VaR

The 99.9% Value-at-Risk is defined as the value such that the probability of losing
more than its value is 0.1%. Since our simulated scenarios are generated using the
same procedure, they all occur with equal probability 1 /m, where m is the number
of simulated scenarios. The 99.9% VaR can therefore be determined as that value
that is greater than the total loss Ly, in 99.9% of the simulated scenarios, and less
the total loss in the remaining 0.1% of the simulated scenarios. This computation
is done by sorting the scenarios according to their total loss Ly so that Ly > Ly
and choosing (the notation [] indicates excess rounding of z)

99.9% VaR = Lg.999m)

The same argument applies to the computation of the VaR for any other percentile.
The larger is the number of simulated scenarios m, the more precise is the
determination of the VaR.

Notice how, in general, the usual formula to compute the VaR in terms of the
standard deviation of the losses does not apply. In particular that formula does not
apply if the distribution of the total loss is not Gaussian. Fig. (2) shows that this is
clearly not the case for the systems under consideration in this paper.

@ WIT Transactions on Modelling and Simulation, Vol 43, © 2006 WIT Press
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with a constant ca
The above set

, which averages to
very 31 calendar days, or once every 21 trading days. This

corresponds to a mini-crash probability of 5%,

ten times more likely than the najve
€Xpectation,
e Fig. 2 shows past losses associated with our portfolio in the time frame
: considered,
Fig. 3 shows the distribution of time i
e

losses, i
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Figure 3: Distribution of time intervals between two consecutive past losses,
superimposed to the exponential distribution at A = 1 /31.
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Figure 4: Log-plot of the cumulative distribution function F(z) for the severity of
historical losses, and best fit using the distribution in eq. (3).

therefore it will be ignored in the rest of the paper, although it could be taken into

account by correcting the frequency distribution.

Fig. 4 shows, in logarithmic scale, the cumulative distribution function for the
severity of historical losses and its best fit using the distribution in eq. (3).

Fig. 5 shows the total loss for each simulated scenario for m = 10000
simulations. The simulated scenarios are sorted according to their total loss. The
09.9% VaR reads directly from this plot as the y-axis value corresponding to the
z-axis value [0.999m] = 9990. :

Other VaR percentiles can be calculated in a similar fashion.

Our result is 99.9% VaR = $360, 000. This is 45% of the total funds invested
in the portfolio. (The number exceeds the regular 99.9% VaR associated with the
portfolio because it only consider events when all stocks jump downward. In fact,

WIT Transactions on Modelling and Simulation, Vol 43, © 2006 WIT Press
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Figure 5: Total loss of each of the 10000 simulated scenarios, The 99.9% VaR

reads directly from this plot as the y-axis value corresponding to the
T-axis value [0.999m] = 9990

-

in the example considered,

paper. Our approach allow
discrete event.)

positive jumps offset most of the risk discussed in this
S Us to isolate the risk associate to this specific type of

m@mg,’—:wq_q.‘.-:rmqf-g-;v S s S

~ 4 Conclusion

This procedure is very general and does not
distribution of the total Jogs.

In this paper, as an example, we have applied our technique to the computation
of the VaR due to minij

-crashes of a given stock portfolio.
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Appendix A: Combined Log-normal + Pareto distribution

The particular distributi
the following form

on utilized in this Paper to model the severity of losses has
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ples) = b= J;O)ée Sl r bz — 2o+ d—F @

This distribution is exactly log-normal for z < x¢, exactly Pareto for z > To,
and it is continuous and differentiable everywhere, including = = z;. 1

i, o, g and 3 are free parameters, while a, b and ¢ are coefficients that depend
on those parameters via the following exact relations:

B T logzg — p b -3 =
ag(\/;a(1+erf( N ))+ﬂ_1(IU+C) ) (5)

(2o +¢)P _umsg—n)?

b — Te 20 (6)
B zoBo?
€= 0%+ logzg — 1 %8 )

where we defined

2 % _
erfz = —/ e Vdt
VT Jo

Appendix B: Statistics about the sample portfolio

Average daily log-return and daily volatility in the time period starting March 16
1992 and ending February 21, 2006.

MSFT RTN HCA EP AVP HNZ USB GD
p/100| 7.2% 1.6% 3.8% 31% 6.3% 3.6% 56% 11.4%
o 22% 21% 22% 2.0% 2.0% 14% 1.9% 1.8%

Average correlation of daily log-returns in the same period.

MSFT RIN HCA EP AVP HNZ ;
MSFT | - 8% 13% 13% 10% 12% 24% 16%
RTN 8% - 13% 10% 14% 13% 1% 29%
HCA | 13% 13% - 9% 17% 18% 21% 14%
EP 13% 10% 9% - 1%. 12% 15% 12%
AVP 10% 14% 17% % - 24% 20% 14%’._‘
HNZ | 12% 13% 18% 12% 24% -  22% 14%
USB | 24% 17% 21% 15% 20% 22% - 17%
GD 16% 29% 14% 12% 14% 14% 17% -
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