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Abstract

Matrix Distributed Processing (MDP) is a C++ library for fast de-
velopment of efficient parallel algorithms. MDP is based on MPI and con-
sists of a collection of C++ classes and functions such as lattice, site
and field. Algorithms using these components are automatically parallel
and no explicit call to communication functions is required. MDP is par-
ticularly suitable for implementing parallel solvers for multi-dimensional
differential equations and mesh-like problems. MDP includes a simulator
that allows one to run and test parallel programs on a single node.

1 Introduction

Matrix Distributed Processing (MDP) [1] is a collection of classes and functions
written in C++ for fast development of parallel algorithms such as solvers for
partial differential equations, mesh-like algorithms, and various types of graph-
based problems. These algorithms find frequent application in many sectors of
physics, engineering, electronics and computational finance. MDP was originally
developed to simplify the coding of parallel Lattice QCD algorithms, i.e. the
numerical computation of properties of composite particles made of quarks,
such as protons and neutrons. While Lattice QCD is currently one of the main
applications of MDP, its range of applicability is not limited to it.

MDP is based on Message Passing Interface (MPI) but parallelization is trans-
parent to the programmer, who does not need to use explicit calls to send/receive
functions. It includes functions for linear algebra with support of a Maple-like
syntax, statistical functions, and fitting functions. MDP also includes a Parallel
SIMulator (PSIM) so that algorithms developed using MDP can be run in parallel
on a single processor machine without MPIL. The parallel processes are created
by forking and communications are realized using local sockets.

MDP can be used on any machine with ANSI C++, POSIX, and MPI. No
specific communication hardware is required, but a fast network switch is sug-
gested.

The best way to introduce MDP is by example. Here is an example of how to
solve a 3d Laplace equation recursively using MDP.
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Problem: Consider the following Laplace equation:

Vp(z) = f(z) (1)

where (z) is a field of 2 x 2 complex matrices defined on a 3D space (space),
z = (x9,Z1,T2) limited by 0 < z; < L;, and

L = {10,10,10}, (2)
f(z) = Asin(2rz/L1),

1 1
t= (1)
The initial conditions are Pinitial (z) = 0. We will also assume that z; + Li=uz;
(torus topology).

Solution: In order to solve eq. (1) we first discretize the Laplacian (2=
82 + 8} + 02) and rewrite it as

3 lpl+0) - 20(2) + w(z - B)] = f(2) (3)

2=0,1,2

where 7 is a unit vector in the discretized space in direction i. Hence we
solve it in ¢(z) and obtain the following a recurrence relation

z“=0,1,2 lo(x + 1) + oz —0)] — f(z)

o(z) = 5 (4)

The following is a typical MDP program that solves eq. (1) by recursively
iterating eq. (4). Notice how the program is parallel but there are no explicit
call to communication functions:
00 #include "mdp.h"
01
02 void main(int argc, char*x argv) {
03 mdp . open_wormholes(argc,argv) ; // open communications
04 int L[1={10,10,10}; // declare volume
05 mdp_lattice space(3,L); // declare lattice
06 mdp_site % (space) ; // declare site variable
o7 mdp_matrix_field phi(space,2,2); // declare field of 2x2
08 mdp_matrix A(2,2); // declare matrix A
09 A€0,0)=1; A(0,1)=I;
10 A(1,0)=3; A(1,1)=1;
11 forallsites(x) // loop (in parallel)
12 phi(x)=0; // initialize the field
13 phi.update(); // communicate!
14
15 for(int i=0; i<1000; i++) { // iterate 1000 times

16 forallsites(x) // loop (in parallel)
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17 phi(x)=(phi(x+0)+phi(x-0)+
18 phi(x+1)+phi(x-1)+
19 phi(x+2)+phi(x-2)-
20 A*sin(2.0%Pi*x(1)/L[1]))/6; // equation
21 phi.update(); // communicate!
22 }
23 phi.save(’’field_phi.mdp’’); // save field
24 mdp. close_wormholes () ; // close communications
25 }
Notes:

e Line 00 includes the MDP library.

e Lines 03 and 25 respectively open and close the communication channels
over the parallel processes.

o Line 04 declares the size of the box L = {Lgq, L1, L2}.

o Line 05 declares a 3-dimensional lattice, called space, on the box L. MDP
supports up to 10-dimensional lattices. By default, a lattice object is a
] mesh with torus topology. It is possible to specify alternate topologies,
boundary conditions, or parallel partitioning for the lattice. Note that

each lattice object contains a parallel random generator.

e Line 06 declares a variable site, called x, that will be used to loop over
lattice sites, in parallel.

e Line 07 declares a field of 2 x 2 matrices, called phi, over the lattice space.
MDP is not limited to fields of matrices. It is easy to declare fields of any
user-defined structure or class.

o Lines 08 through 10 define the matrix A.

e Lines 11 and 12 initialize the field phi. Notice that phi is distributed over
the parallel processes and forallsites is a parallel loop.

e Line 13 performs communications so that each process becomes aware of
changes in the field performed by other processes (synchronization).

Lines 15 through 23 perform 1000 iterations to guarantee convergence. In
real life applications one may want to implement some convergence criteria
as stopping condition.

j; o Line 16 loops over all sites in parallel.
l

e Lines 17 through 20 implement eq. (4). Notice the similarity in notation.
Here phi(x) is a 2 x 2 complex matrix.

e Line 21 performs synchronization.
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00 #include "mdp.h"

01 void main(int argc, char** argv) {
02 mdp.open_wormholes (argc,argv) ;
03 int L[]1={100};

04 mdp_lattice line(1,L);

05 mdp_field<int> spin(line) ;

06 mdp_site x(line);

07 int dE=0, H=L[0], dH=0;

08 float kappa=2.0;

09 forallsites(x) spin(x)=+1;

10 while(1) {

11 dH=0;

12 for(int parity=EVEN; parity<=0DD; parity++) {
18 forallsitesofparity(x,parity) {

14 dE=2*spin(x)*(spin(x-0)+spin(x+0)) ;
15 if (exp(-kappa*dE) >mdp_random.plain())
16 { spin(x)*=-1; dH=dH+2*spin(x); }
17 ks

18 spin.update(parity);

19 }

20 mdp . add (dH) ;

21 H=H+dH;

22 mdp << ’’magnetization=’’ << H << endl;
23 1

24 mdp.close_wormholes() ;

25 }

In this example lines 3-4 declare a 1D lattice of 100 points (1ine). Line 5
declares a field of integers (spin) on this lattice. Line 9 sets all field variables
to 1 and line 7 sets the total magnetization H for this initial spin configuartion.

Line 13 computes the energy variation (dE) of each Markov Chain Monte
Carlo (MCMC) step. Lines 15-16 perform the Monte Carlo accept-reject. If
a change is accepted the spin at site x is flipped and the total magnetization
changes (line 16).

Note how at each MCMC step, first the code tries to flip the spins at even
locations then, after it updates the lattice sites, it tries to flip the spins at odd
locations (line 13). This guarantees computation results are independent on
parallelization of the lattice line.

Since this even-odd distinction is common in many lattice algorithms, MDP
stores all even lattice sites and all odd lattice sites close together. This speeds
up loops over one of the two subsets and also speeds up communication. In fact,
in this example, we are able to limit the synchronization (update) to the site of
a given parity (line 18).
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o Line 23 saves the field. Note that all fields, including user-defined ones,
inherit save and load methods from the basic mdpfield class.

o It should also be noted that all MDP classes and functions are both type and
exception safe. Moreover MDP components can be used without knowledge
of C pointers and pointer arithmetics.

2 Linear Algebra and Other Tools

MDP includes a Linear Algebra package and other tools. Some of the most
important classes are:

o class mdp._real, that should be used in place of float or double;

class mdp_complex, for complex numbers;

class mdp_array, for vectors and/or multidimensional tensors;

class mdp.matrix, for any kind of complex rectangular matrix;

class mdp.measure, for error propagation;

class mdp_jackboot, a container for jackknife and bootstrap algorithms.

The most notably difference between our linear algebra package and other
existing packages is its natural syntax.
For example:

mdp_matrix A,B;
A=Random.SU(7) ;
B=exp(A)+inv(A)*hermitian(A)+5;

reads like
A and B are matrices

A is a random SU(7) matrix
B=er+A71AH +5-1
Note that each matrix can be resized at will and is resized automatically
when a value is assigned.
MDP includes functions for fitting such as the Levenberger-Marquardt algo-
rithm.

3 Lattice, Site, and Field

An mdp_lattice is the class that describes the space on which fields are defined;
it stores the topology of the space (by default that of a torus in d dimensions)
and information about partioning of the space over the parallel processes. In
MDP, a lattice is a graph, defined as a collection of points (lattice sites) connected
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by links (they specify the topology). Each site is uniquely mapped to one of the
parallel processes.

The only restriction is that the graph must have a degree less than 20. From
now on we will assume the default topology of a torus, therefore the lattice
should be thought of as a mesh in d < 10 dimensions.

The constructor class mdp_lattice determines on which process to store each
site, determines the neighbors of each site, and the sizes of the buffers where
each process keeps copies of those sites that are non-local but are neighbors of
the local sites.

The constructor also allocates a parallel random number generator so that
each site of the lattice has its own independent random number generator. This
is important for parallel Monte Carlo applications of MDP and ensures repro-
ducibility of computations on different architectures.

On each lattice it is possible to allocate fields. Some fields are built-in, for
example mdp field<mdp_complex>, i.e. the field of complex numbers. The user
can declare any type of field. For example a field of 5 float per lattice site:

class S {
public: float S[5];
}.

int L[]1={10,10,10};
mdp_lattice cube(3,L);
mdp_field<8> psi(cube);

This code declares a 10 x 10 x 10 lattice (cube) and a field (psi), that lives
on the cube. The site variables of psi, psi(x) belong to class 8 (assuming x is
an mdp-site on the cube).

User-defined fields can be saved:

psi.save("filename");
loaded

psi.load("filename");
and synchronized

psi.update();

Synchronization means that all processes will perform MPI communications
to make sure all buffers that contain copies of non-local site variables are updated
with the proper values. The method update should be called immediately after
the local site variables of a field have been changed.

Once a field object is declared, in the field constructor, each process dynam-
ically allocates memory for the buffers that store the copies of those sites that
are non-local but are neighbors of the local sites. These buffers are created in
such as way to ensure optimal communication patterns.

Every time a field changes, for example in a parallel loop such as
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forallsites(x) phi(x)=0;
the program notifies the field that its values have been changed by calling
phi.update();

The method update performs all required communication to copy site vari-
ables that need to be synchronized between each couple of overlapping processes.

Lattice sites are represented by objects of class mdp_site. Site objects can be
looped over in parallel loops (such as forallsites) but it also possible to explicitly
address a specific site by specifying the site coordinates. Obviously only the
process that stores a site locally should address a specific site. Class mdp_site
has methods to check if a site is local, is it is non-local but a local copy is present
and which process stores the site locally.

4 Optimal Communication Patterns

In MDP, the lattice objects, according with the lattice topology and the parallel
partitioning, determines the optimal way to store site variables in memory and
performing parallel communication. This information is then used by the field
method update that performs the synchronization of the field variables.

Note that MDP does not attempt to overlap computation and communication.
By optimal communication pattern we mean that, under the assumptions below,
the method update minimize network traffic and data copies.

Current optimizations are based on the assumption that each processing
node has one and only one network card at the same time and that the network
is isotropic (latency and bandwidth for each couple of nodes is the same). This
assumption is generally true for Ethernet and Myrinet clusters.

Communications are optimal in the sense that:

o Bach process retrieves all non-local site variables in a single send/recv for

; each process that contains sites which are neighbors of local sites.

, e Two processes that do not store neighbor sites do not communicate with
g each other.

o No process is involved in more than a single send and a single receive at
E one time.

: o Each process stores close in memory those copies of non-local site variables
':’1; which are local to the same process. In this way synchronization does not
|3 . require the use of additional buffers receiving buffers. -

‘ Note that two processes may be overlapping (i.e., store neighbor sites) with
it respect to one lattice and not overlapping in respect to a different lattice within
- the same program. It is possible, in principle, to change the above communica-
tion patterns to optimize communication for various network topologies.
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Although communication is currently based on MPI, they do not make use
of communication tags. It is therefore possible, in principle, to speed-up com-
munication by using a faster tagless and bufferless protocol such as Myricom
GM.

Our communication patterns have the effect of making communication al-
most insensitive to network latency, and communication speed is dominated
by network bandwidth. Benchmarks are very much application dependent since
parallel efficiency is greatly affected by the lattice size, by the amount of compu-
tation performed per site, processor speed and type of interconnection. In many
typical applications, like the one described in the preceding example, the drop
in efficiency is less than 10% up to 8 nodes (processes) and less than 20% up
to 32 (our tests are usually performed on a cluster of Pentium 4 PCs (2.2GHz)
running Linux and connected by Myrinet).

5 MDP and PSIM

For portability reasons MDP is based on MPI. Nevertheless it is desirable to
' be able to run, test and debug MDP programs on a single node (with single or
multi processor architecture) without having to install MPI. The latest version
of MDP includes a Parallel SIMulator (PSIM). Despite the name this is not quite
a simulator but an emulator, i.e. a message passing library that uses local
(unix/posix) socket pairs. PSIM is Objected Oriented and is not based on MPL

When compiling with PSIM, the parallel processes are created at start-up
by forking. The number of parallel processes is specified at runtime by passing
the following command line argument to any MDP executable program

-PSIM_NPROCS=4

(this makes 4 parallel processes).

PSIM also creates a communication log that can be used for debugging. MDP
with PSIM has been tested on Linux, Mac and Windows (with cygwin).

For single processor node, using PSIM does not introduce any speed-up but,

| for a small number of processes (2-16) it does not slow down the code either.
For multi-process shared memory architecture, parallelization of PSIM should
produce a speed-up comparable with MPI. We have been yet performed such
tests.

Moreover, PSIM should perform well on openMosix clusters as soon as open-
Mosix starts supporting migratable sockets since all communication between the
parallel processes will be done by the operating system. Unfortunately open-
Mosix does not support migratable sockets yet.

6 Example: Ising Model

As one more example of usage of MDP we report here a simple program for the
Ising model.
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