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Chapter 9

On ranking schemes and portfolio selection

MASSIMO DI PIERRO AND JACK W. MOSEVICH

ABSTRACT

There are now in use several risk-return indicators, which are utilized
to rank historical returns of portfolios. Some popular ones are the
Sharpe Ratio, the Sortino Ratio, Omega and the Stutzer Index, among
others. It is well known that portfolio log-returns, especially of alterna-
tive assets, are not normally (Gaussian) distributed. This is the reason
for the development of indicators other than the Sharpe Ratio. The
purpose of this paper is to evaluate the relationships between these
indicators for both Gaussian and non-Gaussian distributions. We
prove mathematically that rankings are essentially the same for these
indicators in a Gaussian environment, and different in a non-Gaussian
one, which is as it should be. We are able to compute an implied util-
ity function for the indicators and find that it is the same for all of them,
something not very intuitive. We then propose a utility function, which
corresponds more with what we expect investors to desire. We con-
clude by showing how to relate our results to the Markowitz MPT.

9.1 INTRODUCTION

In this paper we discuss different criteria for ranking portfolios including the
Sharpe ratio (Sharpe, 1964), the Sortino ratio (Sortino and Van Der Meer, 1991;
Sortino and Price, 1994; Sortino and Forsey, 1996), the kappa ratio (Kaplan and
Knowles, 2004), the omega ratio (Shadwick and Keating, 2002; Sortino, 2001;
Wilmott, 2000) and the Stutzer index (Amenc, Malaise, Martellini and Vaisse). We
prove that in a world where portfolio returns are Gaussian distributions, all of the
above ranking systems are equivalent in the sense that although they produce dif-
ferent numbers they will produce the same ranking order. We also prove that all of
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the above ranking systems implicitly assume a non-natural utility function that
attributes the same utility to any positive return (utility equals to +1) and to all
negative returns (utility equals to —1).

We propose a more natural utility function from which we derive a different
ranking system for Gaussian portfolios that is not equivalent to the Sharpe ratio or
any of the other rankings considered. Using the Berry—Esseen theorem we prove
that our ranking system, embodied in equation (24), is applicable to portfolios with
non-Gaussian returns under the condition that one plans to hold the portfolio for a
sufficiently long time.

Finally we show how to apply our findings to Markowitz” Modern Portfolio
Theory (Markowitz, 1952; Wilmott, 2000).

9.2 CONVENTIONS AND DEFINITIONS

Given a portfolio A whose historic values are {S;} we will indicate with p(x) : R — R*
the probability mass function of each of the random variables x; = log(S,,/S;). The
probability mass function is normalized to 1. We also define as F(x) = J:__ p(z)dz the
usual cumulative distribution.

Throughout this paper we will also assume that r is the risk-free interest rate.

Definition: (Ranking). We define a raking as a functional R(p) : R X R* — R that
maps the probability mass function p associated to a portfolio into a real number.

Definition: (Equivalence). We say that two rankings R, and R, are equivalent in a
domain D if there exists a monotonic increasing function / such that for every
probability mass function p in the domain D, R,(p) = h(R,(p))-

If two rankings are equivalent we will use the notation

R, ~R,

The equivalence relation as defined is symmetric and transitive.

Definition: (Sharpe ratio). Given a portfolio characterized by a probability mass
function p(x) the Sharpe (1964) ratio is defined as

ar T
RSharpc(P) - o (1)
where
= wp@as @)

o=A\[ - w2 pw) ax ®
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Herein we denote the Sharpe ratio by y, with no explicit reference to the risk-free
rate r. Note that in the equations which follow, the letter » can also represent a min-
imal acceptable return.

Definition: (Sortino ratio). Given a portfolio characterized by a probability mass
function p(x) the Sortino ratio (Sortino and Van Der Meer, 1991; Sortino and Price,
1994; Sortino and Forsey, 1996) is defined as

def H=r
RSnmnn(p) = (4)

=
Vf__, (r — x)? p(x) dx

Definition: (Kappa-n ratio). Given a portfolio characterized by a probability mass
function p(x) the kappa ratio (Kaplan and Knowles, 2004) is defined as

def H—-r
Rk:\ppa—n(p) = F Tim
[J (r = x)"p(x)d_rJ

(5)

Note that for n = 2, Ry, o(p, 1) = Rgopino(Ps 7)-
Definition: (Omega ratio). Given a portfolio characterized by a probability mass

function p(x) the omega ratio (Shadwick and Keating, 2002; Sortino, 2001;
Wilmott) is defined as

) J”(l ~ Fo))dx
R()mug:l(p) d&—l - (6)

f imF(x)dx

Definition: (Stutzer index). Given a portfolio characterized by a probability mass
function p(x) the Stutzer index (Amenc, Malaise, Martellini and Vaisse) is defined as

er . —log F(rT)
RS[uln:r(p) d=1 lim —T— (7)

T—ee

The Stutzer index ranks portfolios according to the speed with which the proba-
bility of a negative return (when compared with »7') tends to zero when time grows
(T — o).

9.3 EQUIVALENCE IN A GAUSSIAN WORLD

In this section we will restrict to only domain

l (= 252
D= plplx) = PGaussian®¥) = T——¢ L s (8)
Viro

portfolios having a Gaussian distributions of returns.
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Theorem 1. Ry ;.0 ~ RSharpe'
Proof. By explicit integration'

RSar!ino(p) = hl(RSharpe(p))
Where

V2y
h(y) = )
VI — V2/me 2y + 32 — (1 + ) erf(y/\2)

Recall that y = (1 — #)/0 is the Sharpe ratio. Since A;(y) > 0 for every finite real
is y proves the equivalence.

Figure 1 shows a plot of /#, and A]. It also shows that compared with the Sharpe
ratio, the Sortino is relatively sensitive to changes of y for large values of y, but it
becomes insensitive to y for negative values of y.

Theorem 2. Ry, ~ Rgparpe fOT EVETY 2.
Proof. By explicit integration

Rkappa—n(p) = hZ(‘RSharpe(p)) (10)
rheny
h =
Z(y) [2(,1_2)/2€_y2/2g(y)}1.’n

1 +n l1+n 1 l1+n 3
g()’) = r( 2 )IFI( 2 E,yzf?) - \/EylFl(-Ts Esyz’fz)

and | F\(a, b, x) is a member of the family of hypergeometric functions. 45(y) > 0
for every even integer n and every finite real y. Figure 2 shows a plot of /1, and A’
forn = 1, 2, 3. It also shows how the K, ratio exhibits the same sensitivity to y as
the Sortino does, but the higher the value of n, the lower the sensitivity to y.

Theorem 3. Ry epn ~ Rspacpe-
Proof. By explicit integration

ROmcga(p) = hS(RSharpc(p)) (1 1)

2y
2/ me 2 — y + yerf(y/ \/E)

() =1+

'

h3(y) > 0 for finite real y. Figure 3 shows a plot of /, and A3.

of 2 (*
!erf(z) 4 EJ e~ dx
0
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Figure I Plot of ,(v) (left) and Ai(w) (right). , is the Sortino ratio as function of the Sharpe ratio for
a portfolio with Gaussian returns

S/ I T R 0.5 1

Figure 2 plot of fiy(y) (left) and h5(3) (right) for n = 1. 2.3

Theorem 4. Ry, ~ Rpurpe if and only if y > 0,
Proof. By explicit integration

RSlmzcr (p) = h-l(RShurpc(p))

_ Y42 fory>0
hi(y) = { 0 fory = OJ W2

hi(y) = 0 for real y > 0. Figure 4 shows a plot of iy and i';. For a portfolio with
Gaussian mass function, the Stutzer index is unable to rank portfolios with
negative y.
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Figure 3  Plot of 4,(y) (left) and i} (right). & is the omega ratio as function of the Sharpe ratio for
a portfolio with Gaussian returns
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! Figure 4 Plot of h,(y) (left) and A (right). 4’ is the Stutzer index as function of the Sharpe ratio for
! a portfolio with Gaussian returns

So far, we have shown how in the domain of portfolios with Gaussian returns
Rsparpe ™ Rsottino ™ Ritappa—n ~ Romess (13)
and in the subdomain with portfolios with positive Rgy,.
(14)

RSharpe = RSlulzcr

Moreover, we have shown how these indices tend to be more and more sensitive to
y and for larger positive y and less and less sensitive for more negative y.
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Three questions will be addressed in the following sections:

© Given that all of the above systems are equivalent, are they good measures to
rank portfolios?

o If not, what is a better system to rank portfolios?

© How do we extend these results to portfolios with non-Gaussian returns?

9.4 RANKING AND RISK AVERSION

Consider a situation where the risk-free interest rate is = 5% and four possible
future scenarios for a portfolio:

@ #1: The portfolio out-performs » with a return x = 20%

© #2: The portfolio out-performs » with a return of x = 10%

© #3: The portfolio under-performs r with a return of x = 3%
© #4: The portfolio under-performs  with a return of x =—2%.

Itis clear that we prefer #1 to #2, #2 to #3 and #3 to #4 but how do we quantify
this preference? How much more do we prefer #1 to #3 when compared to #2?
How bad is #4 when compared with #3? The answers to these questions have
nothing to do with probability (we are not discussing here the likelihood of one
scenario over the other) but have to do with subjective choice and one’s percep-
tion of risk.

This choice is equivalent to the choice of an implied utility function that we
will indicate by W(x). It returns one’s subjective utility of the scenario in which
the portfolio has a fixed return x. For logical reasons, we value higher returns
more than lower returns. So W'(x) = 0 and this is the only a priori condition we
wish to impose.

Given a utility function it is natural to rank a portfolio by evaluating a
weighted average of W(x) over all possible future scenarios. The weight factor is
the probability of a future scenario with return x. This induced ranking can be
expressed as

def [*=
Ry(p) = | W p) d (15)

Now the question becomes: in a Gaussian world, which choice of W{(x) produces a
ranking equivalent to the Sharpe ratio (and all the other rankings equivalent to the
Sharpe ratio)?

Surprisingly, the answer is

def

W(x) = W ox) = (x = r)l|x — r| (16)

naive
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which implies

Rnaivc(x) = Ji:W;mive{x)p(x) dx

+oo (x - r)e—(—r_ﬂ):"zaz

Il

Lo [ | \2n0
= erf((u — /o \2) (17)
and
Roaive(P) = hs(Rsparpe(P)) (18)

hy(y) = erf(y/V2)

We just proved that for portfolios with Gaussian returns A5(y) > 0.

Theorem 1. R, ;.. ~ Rgparpe:

This finding is surprising because it implies that in a Gaussian world, ranking
portfolios according to the Sharpe ratio, the Sortino, the Kappa, the Omega or the
Stutzer index is equivalent to having the utility function in equation (16). This util-
ity function is plotted in Figure 5.

W, .ive 15 DOt a risk averse utility function. Referring to the examples of the four
scenarios at the beginning of the section this naive utility function implies that we
like scenarios #1 and #2 equally (utility W =+1) and we dislike scenarios #3 and

#4 equally (utility W =—1).

naive

0.5

1
P2

Figure 5 Plot of ¥,

(x), the utility function (function of the portfolio return) that is equivalent to
ranking portfolios using the Sharpe ratio

aive



On ranking schemes and portfolio selection = 136

9.5 ABETTER UTILITY FUNCTION

Clearly, the utility function induced by the Sharpe ratio is not natural and does not
capture the natural risk aversion of many investors. There is an extensive literature
in economics describing more rational choices for utility functions. Because this is
a subjective choice we cannot claim that any one utility function is better than all
others, but we can select a utility function that is more natural than the one in equa-
tion (16) and exhibits the following desirable characteristics:

® W'(x) > 0; the higher the return of a given scenario the higher the utility of the
scenario.

© W(r) = 0; a scenario in which the return is the same as the risk-free rate has zero
utility.

© lim'(x) = 0; we became insensitive to x for large positive returns.

o lim W'(x) = e=; we are extremely sensitive to x for large negative returns.

A utility function that exhibits all of the above characteristics is the constant
absolute risk aversion (CARA) (Wilmott)

def

WC,\RA(I) =—¢ -m(x—r) ( l 9)

Here £ is a subjective number that measures one’s risk aversion. The larger the £,
the more risk averse one is. The CARA utility function W ,p.(x), is shown in
Figure 6.

When we substitute equation (19) into equation (15) for a Gaussian p(x)
we obtain

Rearalp) = J Weara(x) plx) dx (20)
ey
e 202
— f _em(rfx)f_:_.__ dx (21)
- 2ro
o ‘;em(rﬁ_ul +mia/2 (22)

[n order to have the ranking to be a pure number in the range (—co, +0), we define
RoeaP) = 1ir = 1 = mo¥(21) 23)
which is equivalent to R,z .(p) because
Ries(P) = he(Rearal(P)) (24)

hy(z) =—log(—z)/(mr) (25)
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T T A 0.5 1

Figure 6 Plot of W,p,(x), the CARA utility function used to derive Ry (p) ~ Reapa(P)

and hy(z) > 0 for mr > 0 and z < 0.

Note that, for the risk-free asset, R,,,, = 0. “Good” portfolios rank above 0 and
“bad” portfolios rank below 0.

It is important to notice how the Sharp ratio, as well as the Sortino, the kappa,
the omega and the Stutzer index do not depend on any subjective parameters
except for minimal acceptable return » (and » in the case of kappa), while Equation
(23) depends also on the subjective value of m. This is not surprising since the lat-
ter incorporates a scale, represented by m, that encodes information about how bet-
ter scenario #1 is when compared with scenario #2. The Sharpe ranking does not
incorporate any information about this scale and it assumes that scenario #1 is as
good as scenario #2, and scenario #3 is as bad as scenario #4. The introduction of
at least one parameter (in our case m) is necessary to quantify the cost of taking a
risk. The higher the value of m the higher will be the cost of risk.

The ranking scheme R, is not equivalent to Rgy, .. as shown for the following
portfolios (Gaussian returns, ¥ = 5% and m = 2, 4, 8, the latter choices will be
explained later).

Note that in all the schemes portfolio, E ranks better than A (because it has the
same risk but higher return) and I (because it has the same return but lower risk).
For the same reasons F ranks better than B and J, G than C and K, and H than D
and L as was expected. Nevertheless, the relative ranking of portfolios is different
for different schemes and different choices of m:

® Rgpape = E,A,ELG,B,JH,C,K,D, L
o Rqandm=2=H L D G K CEIJLBEILA
© Reqandm=4=H,G, D L, K,C,FILB,EILA
e R andm=8=FEBLJLA G CKHDL
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u a Roparpe Rpss Ripes: Ry
m=2) | (Im=4) (m = 8§)

A 16% 9% 1.22 2.04 1.88 1.55
B 21% 14% 1.14 2.81 242 1.63
C 28% 21% 1.10 372 2.82 1.07
D | 32% 25% 1.08 4.15 2.90 0.40
E 17% 9% 1.33 2.24 2.08 1.75
F 22% 14% 1.21 3.01 2.62 1.83 (=6
G | 29% 21% 1.14 3.92 3.04 1.27
H | 33% 25% 1.12 435 3.10 0.60
I 17% 10% 1.20 2.20 2.00 1.60
J 22% 15% 1.13 2.95 2.50 1.60
K | 29% 22% 1.09 3.83 2.86 0.93
L 33% 26% 1.08 4.25 2.90 0.19

According to CARA for m = 4 the best portfolio is H and according to Sharpe
itis E.

9.6 EXTENSION TO NON-GAUSSIAN DISTRIBUTIONS

In the real world the random variables x; are not Gaussian and one may wonder how
this affects our conclusions.

First of all the statement that the Sharpe ratio, the Sortino, the kappa, the omega
and the Stutzer index are equivalent is not true any more and each corresponds to
a different implicit choice of a utility function. One cannot answer the question to
which one is better because there is no objective benchmark any more.

Anyway the real world is “close” to Gaussian if returns are computed over rela-
tively long time periods (this is shown later) and all of these ranking systems are
inappropriate in the Gaussian limit. Therefore, there is no reason to believe they
should be appropriate for non-Gaussian or close-to-Gaussian distributions.

On the other hand, despite the fact that in the preceding section, equations
(20)-(22) and equation (23) are derived assuming a Gaussian p(x), the ranking
induced by equation (23) is still correct for non-Gaussian distributions, providing
that one plans to hold portfolio a long enough time.

First of all it is important to realize that in the Gaussian world equations (20-22)
do not depend on the time scale, since the probability distribution for the I-, the 2-
or the 100-day return is always Gaussian. In a non-Gaussian world the probability
distribution for 1-day returns is different than the probability distribution for 2-day
returns, etc. In order to take this into account we define p(x) as the probability mass
function for 1-day returns and, in general, p,(X) as the probability mass function of
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I-day returns where X = log(S,/S,) = Z:DT x; and x; = log(S,, ,/S,). We will
assume all the random variables x, are independent and follow the distribution p. We
also define u and o as the mean and standard deviation of p-

We can now rewrite equation (15) as the weighted utility at the end of period T

Ry(p. )= | W) py ) dx 27)

Owing to the Central Limit Theorem and the Berry-Esseen Theorem, when T —eo,
Prapproaches a Gaussian distribution with mean 1T and standard deviation ¢V,
This is demonstrated in Figure 7 for an initial triangular distribution. Therefore for
our choice W = Wz, equation (27) implies

3!‘1—52 RCARA(pv T) Seghir-prtutatil .. Rbcst(p) (28)

It remains to address how fast R, ara approaches the limit. From the Berry—Esseen
theorem it follows that;

Lemma 1. For every probability mass function p and every € > 0 there exists a
¢ > 0 such that

Repra(p, T) + eme=wrtmionl < o/\T 4 ¢ (29)
2.00 T
j
/i
I}
- /
/s
{ i
/
1.50 - ';'
/
/
R I
i
/
. !.’ o
< 100 I
= I
=8
0.50 -
.,.-»'*/;;: .7 T
M ——t S -
-200 -1.50 -1.00 -0.50 0.00 050 1.00 1.50 2.00
X
Figure 7 p.(x)for T=1,...,10 is shown given a triangular distribution for p(x) (the dashed line).

When T—es, p;(x) approaches a Gaussian distribution
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where ¢ depends on € and the shape of p.

Finally from equation (28) and the above lemma we conclude that:
Proposition 2. In the general case of portfolios with random returns having non-
Gaussian distributions one should rank the portfolios by explicit integration of
equation (27). Nevertheless, for our choice of the CARA utility function and for a
long holding period T, this is equivalent to ranking the portfolios using Ry, equa-
tion (23). The error incurred is proportional to 1/VT.

9.7 MARKET DETERMINATION OF m

In our notation m is a positive number that encodes the investor’s risk tolerance. A
low value of m (close to zero) indicates a high tolerance of risk, while a high value
of m indicates a low tolerance of risk (risk aversion).

Despite the fact that m is subjective one can ask if there is something like an
“average market value” for m. In order to address this question we considered the
Dow Jones industrial (D.J) average index in the range from Oct 1984 until Oct
2004 and we compute the average yearly return u and the average yearly volatility
o (standard deviation) of the weekly lognormal returns. We find

1 = 0.1076(= 10.76%) (30)
o = 0.1620(= 16.20%) (31)

we then assume that the DJI has the same ranking as a risk-free interest (= 0)

ol
Ry (DJI) = % =1l=m=== 0 (32)

From equation (32) and a reasonable guess » = 0.05 (5%) we obtain
m =4 (33)

Therefore, in this paper we consider empirical values of m in the range from 2 (for
a risk lover investor) to 8 (for a very risk averse investor) and a typical valuem = 4
for an average investor.

9.8 MODERN PORTFOLIO THEORY

Finally we wish to clarify the role that equation (23) plays in the context of
Markowitz' modern portfolio theory (MPT) (Markowitz, 1952; Wilmott, 2000).

In a typical problem one is given a set of NV assets, 1, being the expected return
from asset i and o, the covariance between asset i and j. The risk-free rate is .
What is the optimal portfolio?

The MPT establishes that the optimal portfolio is a combination of the risk-free
asset (with weight @) and the Markowitz portfolio (with weight 1 — ). The
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Markowitz portfolio is a linear combination of the assets (excluding the risk-free
one) with weights equal to

W =S (67, (1~ 1) (34)
J

the mean and variance of the Markowitz portfolio are given by

def def
Uy = Z wilt; and o, = wz wwW.o, (35)
M : i M 5 4l

The MPT decouples the problem of finding the optimal combination of risky
assets with that of finding the optimal combination of risk-free asset and risky
assets. The MPT solves the first problem but the solution of the second problem is
not uniquely determined because it leaves o undetermined.

Since e is not determined by the Markowitz’s method, its value is subjective and,
in its own way, & measures the attitude towards risk of the investor. We see « is
related to our value of m.

Let M, be a portfolio, which is a linear combination of the risk-free asset with
weight o and the Markowitz portfolio (as computed by the MPT) with weight
(I = o). The probability mass function associated to this portfolio is

1

Po(x) = ad(x — 1) + (1 = 0f) ———e 20}, (36)
V2Jr0'M

where & is the Dirac delta function. We can now determine ¢ by maximizing

Ryeq( P). This procedure is represented graphically in Figure 8. The solution can
be found by explicit computation as stated in the following:

Theorem 1. Given a risk-free rate » and a Markowitz portfolio (i, 6y,), accord-
ing to the Ry, ranking, the optimal portfolio consists of holding a fraction ¢ of the
risk-free asset where

My —r

a=1-— >
mo 3,

(37

and a fraction (1 — &) of the Markowitz p'ortfolio. This optimal portfolio has an
expected average return and volatility given by

(Hy —r)? Hy —F
= g et 1ol L S 38
Hoest =1 mo and 0., maoy, (38)

Note that the Sharpe ratio cannot be used to solve the problem of determining o for
two reasons: (1) the Sharpe ratio is undetermined for the risk-free asset; and (2) in
the return versus risk plot the indifference curves associated with constant rankings

are straight lines, therefore they cannot be tangent to the Markowitz line parame-
trized by o
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Figure 8 The MPT on a u, o plane is shown, where the ranking R, (p) is used to determine the
investor’s indifference curves. All portfolios on the line are equivalent according to MPT. The concave
parabolas represent indifference curves (sets of portfolios having the same ranking). The higher the
parabola, the higher the ranking. The best portfolio can be determined by finding the indifference curve
tangent to the line or indifference curves. All portfolios on the line are equivalent according to MPT.
The concave parabolas represent indifference curves (sets of portfolios having the same ranking).
The higher the parabola, the higher the ranking. The best portfolio can be determined by finding the
indifference curve tangent to the line figure

9.9 CONCLUSIONS

In this paper we proved that using the Sharpe ratio, the Sortino, the kappa, the omega
or the Stutzer index to rank portfolios are equivalent choices when portfolios have
Gaussian returns (that eventually is true for sufficiently long time 7'). Nevertheless, all
of these ranking systems implicitly assume a utility function that is not consistent with
the risk aversion of investors. Moreover these ranking schemes are not useful for many
important practical applications (such as finding indifference curves for use in MPT).

With our choice of the CARA utility function W(x) =—e """ (where r is the
risk-free rate and m parametrizes our risk attitude) we determined a ranking formula

Rolp) = lir — 1 — mo/(2r) (39)

that is applicable to portfolios with Gaussian and non-Gaussian returns. In the lat-
ter case the formula is valid but introduces a numerical error in the ranking that is
proportional to T~ "2, T'is the time one is planning to hold the portfolio. This error
can be arbitrarily reduced by holding the portfolio for a sufficiently long time.
Finally, we performed an analysis of the DJI average index (data from 1984
until today) and determined an average market value for m = 4. Further studies
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on the time dependence of m and its correlation with other market indicators are
required.

According to the EDHEC (Amenc, Malaise, Martellini and Vaisse) 69% of
European Hedge Funds reports the Sharpe ratio to their investors and 22% report
the Sortino ratio. We believe these numbers are misleading and should be used
with caution. In particular;

© One should not at all rank portfolios that are correlated, in this case one should
use the MPT or the CAPM models.

o Ifone is considering a set of uncorrelated portfolios (or portfolios with unknown
correlations) in order to select the best and invest funds in both the selected port-
folio and the risk-free asset, one should use the Sharpe ratio to rank the portfo-
lios. In this case one also needs to select a utility function to decide how to
partition the funds between the selected portfolio and the risk-free asset.

© Ifone is considering a set of uncorrelated portfolios (or portfolios with unknown
correlations) in order to invest a fixed amount of money in the selected portfo-
lio, one should use equation (39).

Some of the ideas discussed in this paper are implemented in the form of computer
programs and can be accessed through the web page:
http://www.metacryption.com/schemes.html
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