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The lattice formulation provides a way to regularize, define and compute the Path
Integral in a Quantum Field Theory. In this paper, we review the theoretical founda-
tions and the most basic algorithms required to implement a typical lattice computation,
including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized
Biconjugate inverters. The main emphasis is on gauge theories with fermions such as
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quantities of phenomenological interest.
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1. Introduction

In this paper, we present a brief review of Lattice Quantum Field Theory (LQFT),

a way to formulate a Quantum Field Theory (QFT) in algorithmic terms.a Most of

this work is based on lectures given at Fermilab by the author in 2001.

QFT’s are the application of quantum mechanics to fields. They form a very

general class of mathematical models that reduces to quantum mechanics in the

nonrelativistic limit (speed of light → ∞), to relativistic mechanics in the deco-

herence limit (Planck constant → 0) and to classical physics when both limits are

taken.

Any QFT states that:b

• each type of elementary particle “A” is associated with a field φ(x) so that

|φ(x)|2 represents the probability of the event “particle A is at the space–time

point x = (x0,x)”;

aFor an introduction to QFT see Refs. 1 and 2 and for LQFT see Refs. 3–6.
bFrom now on we assume units in which both the Planck constant and the speed of light are 1.
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• there exists a functional of the field S[φ, . . .], called action, which describes the

dynamics of the system and any correlation amplitude between multiple time

ordered events A at x, A at x′, A at x′′, etc. and can be computed as

〈0|φ(x)φ(x′)φ(x′′) · · · |0〉 def
=

∫

[dφ]φ(x)φ(x′)φ(x′) · · · eiS[φ,...] . (1)

The square of a correlation amplitude is a regular real correlation function.

The field components φ(x) can be scalars, complex, spinors, vectors, tensors,

etc., depending on the properties of the particle A. x′, x′, x′′ are points in the

space–time. The symbol
∫
[dφ] indicates an integral over a Hilbert space and is

known as Path Integral (PI). Each φ in the Hilbert space is referred to as a history

or path or field configuration.

The symbol φ is used here as a template for a generic field and, for now, one

may think of it as a real scalar field. Later φ will be replaced by the symbol U

when it represents a gauge field and by the symbol ψ when it represents a spinor,

for example, a quark.

Translational invariance combined with the finite speed of light implies that S
can be written as the integral over the s-dimensional space–time of a local function

of φ, the Lagrangian density L:

S[φ, . . .] =

∫

L(φ(x), ∂µφ(x), . . .)dsx . (2)

The dots indicate additional fields and/or parameters of the theory such as

particle masses and coupling constants. The Lagrangian is usually a function of

φ(x), its gradient and higher derivatives.

The naive assumption that the Hilbert space in the PI is the space of all possible

distributions leads to the problem of divergences of QFT’s. In order to understand

and cure this problem, one has to properly define this space and provide an algo-

rithmic way to evaluate the integral. That is the main purpose of these notes.

For some theories, such as quantum electrodynamics (QED), it is possible to

perform a functional expansion of the integrand of Eq. (1) around a minimum and

integrate exactly the individual terms. These terms are the Feynman diagrams. The

result is an asymptotic series, the Dyson series, that can be used to approximate

the PI. While this is a well defined algorithm it is very difficult to implement, it

only works in some cases, and it cannot be improved to arbitrary accuracy because

of the asymptotic nature of the Dyson series. The divergences that appear in this

case can be subtracted by regulating the theory. For example, one can dump the

Fourier modes of the fields with frequency above some cutoff p.

The perturbative expansion plays a role analogous to the Taylor expansion and

it does not provide a general definition of the PI. Moreover, for some theories, the

Dyson series may diverge and a different approach is required in order to define

and compute Eq. (1).



February 17, 2006 14:42 WSPC/139-IJMPA 02896

An Algorithmic Approach to Quantum Field Theory 407

For quantum chromodynamics7,8 (QCD) and other strongly coupled theories,

the lattice formulation has been one of the most successful. We will refer to the

latter as lattice quantum chromodynamics (LQCD).

2. Overview

2.1. Formulation

The formulation of LQFT consists of three stages.3–5

Step 1: Discretization. The space–time is approximated with a finite hyper-

cubic mesh such that φ(x) is only defined on the lattice sites x. Now the Hilbert

space that constitutes the integration domain is well defined. The hypercubic mesh

is characterized by the number of dimensions, s, the lattice spacing, a, the overall

size, L = Ka, and the boundary conditions. Here is an example of a 3D lattice.
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After discretization, for every finite a the symbol
∫
[dφ] becomes a well-defined

multidimensional integral

∫

[dφ] '
∫

dφ0

∫

dφ1

∫

dφ2 · · · , (3)

where the ith degree of freedom, φi is localized at some lattice site.

Step 2: Wick rotation. The time coordinate x0 is Wick rotated x0 → ix0

thus turning Eq. (1) into

〈0|φ(x)φ(x′)φ(x′′) · · · |0〉E =

∫

[dφ]φ(x)φ(x′)φ(x′′) · · · e−SE[φ] , (4)

where SE is now the Euclidean action. If the exponent term is real, and this

is true for most physical systems of practical interest, then Eq. (4) reads as a

weighted average of φ(x)φ(x′)φ(x′′) · · · with an exponential weight factor equal to

exp(−SE).

Equation (4) looks like a correlation in statistical mechanics and the integral

can be computed using standard numerical techniques.
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Step 3: Monte Carlo Computation. Equation (4) is approximated by a

finite sum

〈0|φ(x)φ(x′)φ(x′′) · · · |0〉E ' 1

N

k<N∑

k=0

φ[k](x)φ[k](x
′)φ[k](x

′′) · · · . (5)

Each field configuration φ[k] is generated by random sampling from a probability

distribution proportional to exp(−SE [φ]). As more terms in the sum are considered,

the right-hand size of Eq. (5) approaches the left-hand side. The numerical error

in this numerical approximation can be controlled and it is usually proportional to

N− 1
2 where N is the number of generated configurations.

This lattice approach to the PI can be improved to any arbitrary precision by

reducing the discretization step (a → 0), by considering a larger portion of space-

time (L→ ∞), and by generating more configurations (N → ∞). The extrapolation

of a to zero is referred to as the continuum limit.

Notice that the set of Monte Carlo configurations which appear in the sum

Eq. (5) does not depend on the particular correlation amplitude one is computing

and therefore it can be reused for different computations as long as the system is

the same (i.e. it is described by the same action). For example, in typical LQCD

computations, a large numbers of configurations are generated, stored, and reused

for different computations.

Because of the Wick rotation, any correlation computed using the above tech-

nique is defined in the Euclidean time, not in the Minkowski time. Some observables

are unaffected by the Wick rotation and can be reliably computed, while others

require an analytical continuation back to Minkowski time. Some phase information

may be lost when combining this analytical continuation with the finite precision

of the Monte Carlo method and only those observables that do not require analyt-

ical continuation back to the Minkowski time can be reliably extracted from the

lattice.9 Luckily these include the low energy spectrum and the absolute value of

matrix elements of operators between on-shell states. In LQCD typical computa-

tions include the masses of bound states such as glueballs, mesons, baryons, and

matrix elements between these states.

2.2. Algorithms

Any Monte Carlo computation can be decomposed into three elementary steps.

Step 3.1: Markov Chain Monte Carlo (MCMC). The MCMC is a method

to generate the field configurations φ by random sampling from a known probability

distribution which, in this case, is proportional to exp(−SE [φ]).

M-φ[k]
- φ[k+1]
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The idea behind the Markov Chain is that of building a randomized iterative algo-

rithm M so that the transition probability PM(φ′|φ) of going from a configuration

φ to a configuration φ′ satisfies the following reversibility condition

e−SE [φ,...]PM(φ′|φ) = e−SE[φ′,...]PM(φ|φ′) . (6)

Regardless of the starting configuration φ[0], the succession in k is ergodic with

the desired stationary distribution10 exp(−SE[φ, . . .]). The simplest MCMC algo-

rithm that satisfies the reversibility condition, Eq. (6), is the Metropolis11 algorithm

shown in Fig. 1. This algorithm makes the next configuration in the chain by either

1 Algorithm: Metropolis for MCMC
2 Input: φ, Euclidean action S
3 Output: φ′

4

5 generate φ′ at random uniformly in the Hilbert space
6 generate a random number z
7 if z > exp(S(φ) − S(φ′, ...)) then
8 replace φ′ with φ
9 return φ′

Fig. 1. Metropolis is the simplest algorithm to generate a Markov Chain Monte Carlo (MCMC).
It performs a global change of the input configuration and then an accept–reject step of that
change. The latter step ensures the reversibility condition and the ergodicity of the chain. Notice
that every time an update is false the output configuration is the same as the input.

1 Algorithm: Gibbs sampling for MCMC
2 Input: φ, euclidean gauge action S
3 Output: φ′

4

5 for all lattice sites x
6 store the field variable φ(x) in φold

7 replace the value of φ(x) with a random one (uniform in domain)
8 generate a random number z
9 if z > exp(−[change in action]) then

10 replace φ(x) with φold

11 φ′ = φ

12 return φ′

Fig. 2. Gibbs sampling is another algorithm to generate the MCMC. It loops over all degrees of
freedom of the system and, for each of them, it performs a local change and an accept–reject of
the change. If the action is local, Gibbs sampling and algorithms derived from it are more efficient
than the Metropolis.
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picking a copy of the preceding one, or a totally new configuration generated with

uniform probability in the configurations’ domain. This choice is implemented as

an accept–reject step that depends on the action and guarantees that the transition

probability satisfies the reversibility condition.

One algorithm derived from the Metropolis is the Gibbs sampling, Fig. 2. It uses

an accept–reject similar to the Metropolis algorithms but differs because only one

field variable is updated at one time. If the action is local, and this is usually true

for most physical systems, the accept–reject condition is also local, and the overall

algorithm is more efficient than the Metropolis in sampling the space.

There are many other algorithms that can be used for generating the MCMC

configurations and most of them are derived from either the Metropolis or the Gibbs

sampling.

Step 3.2: Measure the operator. This algorithm measures the desired

correlation, the operator O = φ(x)φ(x′)φ(x′′) · · ·, on each MCMC configura-

tion φ[k].

This step is nontrivial because the operator O may depend on fields that do not

appear in the PI, for example fermions propagating in a background gauge field. If

this is true, the algorithm O requires the computation of fermion propagators. We

will provide more details in a later section.

O-φ[k] - φ[k](x)φ[k](x
′)φ[k](x

′′) · · ·

Step 3.3: Average and Analysis. The final result is computed by averaging

the measurements of each configuration. This average is accompanied by a statistical

analysis to determine the error in the result.

A
-φ[1](x)φ[1](x

′)φ[1](x
′′) · · ·

-φ[2](x)φ[2](x
′)φ[2](x

′′) · · ·
-φ[3](x)φ[3](x

′)φ[3](x
′′) · · ·

- 〈0|φ(x)φ(x′)φ(x′′) · · · |0〉
± statistical error

Estimating the statistical error is of crucial importance since it must used as a

stopping condition for the MCMC. A naive estimate of the error is given by

σ/
√
N where σ is the standard deviation of the individual measurements O[k].

However, this estimate fails when the individual measurements are not Gaussian

distributed. The standard algorithm to estimate the statistical error in an average

without making any assumption about the underlying distribution is the Bootstrap

algorithm.12

Every lattice computation is a combination of the above elementary steps as

shown below.
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... continue MCMC ...-

- φ[3]
-M-

- φ[2]
-M-

- φ[1] -M-φ[0]

O -

O -

O -

A - 〈0|φ(x)φ(x′) · · · |0〉
± statistical error

-irrelevant

-physical

-L, N

-SE , φ[0]

Because of the way the configurations φ[k] are generated, each of them retains

some memory of the preceding configurations in the chain. This correlation dies

out with the distance in MCMC steps between configurations. If the evaluation of

the operator O on each individual configuration is more expensive than the ele-

mentary MCMC step M, it may be wise to skip a number of configurations and

evaluate the operator only on a subset of the total number of MCMC configura-

tions. By skipping c configurations at each step, for c large enough, φ[k] and φ[k+c]

will be sufficiently decorrelated and the procedure provides a better sampling of the

integration space while saving CPU time. An empirical choice is making c larger

than the maximum distance between lattice sites in lattice units, c > sL/a. In

fact, if one assumes that for a local action, at each elementary MCMC step infor-

mation propagates only from one lattice site to the next, after c steps, information

should propagate all around the lattice, thus removing the memory of the preceding

configuration.

From now on, when referring to a MCMC step, we will indicate the repetition

of multiple elementary steps in order to achieve a sufficient decorrelation between

effective consecutive configurations.

2.3. Input of the algorithms

Any lattice computation takes the following input.

• The action SE . The action determines the dynamics of the system. The same

system may be represented by multiple actions that differ from each other be-

cause of irrelevant operators. These are high dimensional operators that can be

added to the Lagrangian and whose contribution to the action and to the correla-

tion amplitudes vanishes in the continuum limit. Nevertheless, their contribution

affects the rate of convergence of correlations to the continuum limit and can be

relevant from a numerical point of view. The art of finding these operators and

determining their coefficients is called improvement and is based on the work of

Symanzik.13
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• The initial field configuration, φ[0], from which the Markov Chain is started. The

result of the computation should be independent from this choice because the

MCMC loses memory of this initial configuration. One way to verify that this is

true is by repeating the computation using different φ[0].

• The lattice volume, represented by the parameter L. Ideally, one would like to

perform computations close to the limit L→ ∞. In practice, this is not possible.

A finite L acts as an infrared cutoff which results in systematic errors known as

finite size effects. These effects can be quantified by repeating the computation

at different values of L. For large L boundary conditions become irrelevant but,

for finite L, they do affect the computation. The usual choice consists of periodic

boundary conditions in the hypercubic lattice topology:

∀x, φ(x + L)
def
= φ(x) . (7)

For fermions often antiperiodic boundary conditions are adopted

∀x, ψ(x + L)
def
= −ψ(x) . (8)

For typical LQCD computations L ' 32a ' 2fm and often L is chosen larger in

the time direction than in the space direction. Empirical results indicate that for

L > 5/mπ the corresponding systematic error is less than 1%.

• The number of MCMC steps N . This number is limited by the total computing

time available. For different operators, O, the Monte Carlo integration converges

at different rates with N . For typical LQCD computations N ' 1000.

• Physical parameters of the Lagrangian, such as masses of elementary particles,

m, and coupling constants, g. Particles with masses m < 1/L and m > 1/a have

propagators that, in Euclidean space, exhibit a correlation length larger than

the lattice size L and smaller than the lattice spacing a, respectively. Elemen-

tary particles with these masses cannot be put on the lattice in a naive way. The

standard approach for light fermions consists of performing the computation with

nonphysical values for the masses (in the allowed region 1/L < m < 1/a) and

then extrapolating the results to the physical values m → m̄ < 1/L. This extra-

polation is called chiral extrapolation. For heavy fermions the extrapolation is

just one of the possible approaches and different solutions are discussed in a later

section.

• Irrelevant parameters. One has the freedom to add irrelevant operators to the

Lagrangian, i.e. operators whose contribution to the action vanishes in the con-

tinuum limit. Some choices for the coefficients of these operators are better than

others because they improve the rate of convergence of the correlation amplitudes

to the continuum limit. The values of these parameters do not affect the result

of the computation but they do affect how fast one gets to the result within the

required precision.

Most notably, the value of a is not a direct input of any lattice computation. All

the physical input parameters (masses and coupling constants) are bare parameters
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that, at constant physics, depend on the lattice spacing. Because of this implicit

dependence, the choice of the coupling constant (which we will refer to as g) is

equivalent to setting the value of a. In general the relation between g and a is

described by the Renormalization Group Equation (RGE).

Because the RGE is often only known perturbatively, one does not exactly know

a priori the value of a in a lattice computation. Since every lattice quantity is

computed in units of a, any error on a introduces an uncertainty in those quantities

with dimension different from zero. For example the energy spectrum is in units of

1/a. This problem is solved by computing ratios of masses and/or matrix elements

that cancel any explicit dependence on a. An equivalent approach used in LQCD

consists of measuring a by comparing the pion mass, mπ, computed from the lattice

in lattice units with the physical pion mass and using this value to convert other

quantities in physical units. We will see in the next section how this procedure is

equivalent to choosing a renormalization condition.

The RGE indicates that the continuum limit a → 0 corresponds to a fixed

point of the theory g → g∗ (for example for asymptotically free14 theories g∗ = 0)

therefore the continuum limit is realized numerically by tuning g closer to the fixed

point g∗. Ideally the output of the computation should plateau as this limit is

approached. In LQCD a typical example is the computation of the mass of the

scalar over the vector meson for fixed bare quark masses.

2.4. Regularization and the continuum limit

On one hand, the lattice provides a regularization scheme for the continuum PI.

On the other hand, the lattice formulation in the continuum limit provides a defini-

tion of the continuum PI. We wish to clarify the meaning of the concept of regu-

larization and renormalization in the lattice paradigm.

We start by making two observations.15,16

• One can never measure the value of a continuum field φ(x) at every point in

space–time. One can only measure its integral over the test function that corre-

sponds to a physical detector, which has a finite extension. Therefore, there are

mathematical reasons to require that a continuum field be defined in the space of

distributions. In particular, one assumes that a particle can be localized to any

arbitrary precision and that the corresponding field configuration can be a delta

function δ(x).

• One wants to model the short distance physics by introducing a Lagrangian

density that contains only local (contact) interactions. Any nontrivial Lagrangian

contains terms that are products or powers of fields.

These two observations are incompatible because the product or power of fields is

not a well-defined quantity when a field is a delta function. The role of regularization

is that of defining this product.
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There is a physical reason behind this problem: if one only knows the field via a

finite size detector, with a spatial resolution limited to ā, then any field fluctuation

on a scale smaller than ā should not be part of the model. This is why the model

itself forces one to introduce some kind of cutoff a < ā. The effect of modes with

length scale smaller than a is encoded in the value of the bare coupling constants

that one puts in the model. Any change in a implies a change in the modes that

contribute to the bare coupling constants and, therefore, their values have to be

scaled accordingly in order to describe the same physical system.

The easiest way to regularize a distribution δ(x) is by replacing it with some

localized function with finite support, for example

δ(x) → δa(x) =
1

a
[θ(x+ a/2)− θ(x − a/2)] . (9)

This makes the product of distributions δn
a (x) well defined.

Let us consider now a 1D scalar theory defined in the interval [0, L]. Its most

general correlation amplitude, defined in terms of the PI, is

〈0|φ(x)φ(x′)φ(x′′) · · · |0〉 def
=

∫

[dφ]F [φ(x), g] , (10)

where F [φ(x), g] is the integrand

F [φ(x), g]
def
= φ(x)φ(x′)φ(x′′) · · · e−SE[φ,g] (11)

and g is a coupling constant that appears in the action. The specific form of the

action, SE [φ, g] is unimportant but we assume that the action contains an inter-

action term of the form

g

∫

φn(x)dx (12)

with n > 2. This makes F [φ, g] a nontrivial function of φ.
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Fig. 3. (left): Example of possible regularization for the delta function. The x axis is in units of
a, the y axis is in units of 1/a. (center-right): Example of a continuum field configuration φ and
its approximation with a linear combinations of regularized delta functions.
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For a = 0.1 (K = 10):
∫ (a)

[dφ]F [φ, g]
def
=

∫

dφ0 · · ·
∫

dφ9F [φ, g]

= F
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For a = 0.05 (K = 20):
∫ (a)
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For a = 0.025 (K = 40):
∫ (a)

[dφ]F [φ, g]
def
=
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And at the continuum limit, a→ 0 (K → ∞)
∫

[dφ]F [φ, g]
def
= lim

a→0

∫

dφ0 · · ·
∫

dφK−1

︸ ︷︷ ︸

K'L/a

F [φ, g]

= F
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Fig. 4. Example of lattice regularization of the PI.
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Lattice regularization is the way to regularize the integral (10) by approximating

the fields with sums of regularized delta functions:

φ(x) ' φlatt(a, x)
def
=

K−1∑

k=0

φkδa(x− ka) , (17)

where

φk
def
=

1

a

∫ ka+a

ka

φ(x)dx . (18)

This is equivalent to discretizing the space–time on which the fields are defined (as

shown in Fig. 3).

After discretization, for every finite K = L/a,
∫ (a)

[dφ]F [φ(x), g]
def
=

∫

dφ0

∫

dφ1 · · ·
∫

dφK−1

︸ ︷︷ ︸

K'L/a

F [φlatt(a, x), g] +O(a) . (19)

Here we used the upper index (a), which identifies the regularized PI with lattice

spacing set to a.

Divergences associated with the limit a → 0, K → ∞ (at L = Ka = const) are

called ultraviolet, while those associated with the limit K, L→ ∞ (at a = L/K =

const) are called infrared.

Figure 4 shows, in a schematic way, how the path integral, Eq. (16), can be

approximated by finite multidimensional integrals, Eqs. (13)–(15), and the fields

are defined on a lattice. For each finite a, the “sum over the paths” (Eqs. (13)–(15))

is well defined since all divergences that may appear can be absorbed in the nor-

malization of the integration measure and, for each path φ, the functional F [φ, g] is

finite. In the limit a→ 0 those configurations that correspond to a localized particle

become more and more peaked and approach a Dirac δ(x) function (Eq. (16)). Since

the integrand F [φ(x), g] is nonlinear, the integrand diverges on those configurations

φ(x) ' δ(x).

In order to have a well defined limit a → 0, K → ∞ (at L = Ka = const) one

must require that the result of the regularized path integral is independent from

a. The only way to do it is to making the field normalization and the coupling

constant (the g of Eq. (12)) dependent on a:

g → gR(a,Λ) (20)

(the constant Λ must be introduced because, in general, a and g do not have the

same dimensions). This makes the physics independent by the lattice scale a.

One does this by choosing a particular correlation amplitude (identified by the

functional integrand F [φ, g]) and imposing the constraint

d

da






∫

dφ0

∫

dφ1 · · ·
∫

dφK−1

︸ ︷︷ ︸

K'L/a

F [φ(x), gR(a,Λ)]




 ' 0 . (21)
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Equation (21) is the RGE for a lattice regularized theory and it determines the

behavior (the running) of gR(a). The appearance of Λ is called dimensional trans-

mutation.

Λ is the typical length scale of the physics being studied. This scale is in nature

and there is no freedom to change it. For QCD, for example, it is best determination

is from the LQCD scaling of the coupling constant,17 ΛMS
QCD ' 259(1)(20) MeV

(1/ΛQCD ' 1 fm).

Notice that this procedure of defining the limit a→ 0 cannot be carried out for

an arbitrary theory since there may be more sources of divergence than coupling

constants. If this limit can be defined the theory is said to be renormalizable, if not,

a must be kept finite and the theory should be considered as an effective theory.

We distinguish between the bare parameters that appear in the regularized

Lagrangian (for a finite value of the cutoff, a) and the dressed or renormalized

parameters that are measured by actual experiments. If one takes the limit a→ 0,

the bare parameters lose any physical meaning and one must carefully define the

renormalized ones (one is said to choose a prescription). If one is happy with keeping

the cutoff small but finite one is allowed to identify the renormalized and the bare

parameters, because these can now be measured. This approach is known as the

Kadanoff–Wilson approach to renormalization.

In LQCD Eq. (21) is realized numerically. One repeats the computation of the

same quantity, for example the pion mass, mπ, for different values of the coupling

constant g′, g′′, g′′′, etc. thus obtaining a′m̄π, a′′m̄π, a′′′m̄π, etc. where m̄π is

the physical pion mass. By comparing the lattice results in lattice units with the

physical pion mass one can obtain the value of a that corresponds to the input

values of g. From the plot one determines g(a) and identifies the fix point g∗. The

same procedure can be carried on any physical quantity and it should be lead to

the same running of g, up to corrections in a.

Since we will never be able to probe the physical world at every length scale,

every quantum field theory should be considered an effective theory.

2.5. Lattice regularization versus momentum cutoff

A continuum field φ can be expanded into Laplace components as

φ(x) =

∞∑

n=0

bne
ipnx , (22)

where

pn
def
=

2πn

L
; bn

def
=

1

2π

∫ L

0

φ(x)e−ipnxdx . (23)

Similarly a lattice field, Eq. (17) can also be expanded in Laplace components

and we obtain

φlatt(a, x) =

∞∑

n=0

b′ne
ipnx , (24)
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Fig. 5. Different behavior of the integrand of b′n for high frequency modes (left) and low frequency
modes (right) respectively. The x axis is in units of a.

where

b′n =
1

2π

K−1∑

k=0

[

φk

∫ L

0

δa(ka− x)e−ipnxdx

]

. (25)

It becomes evident that for pn > 1/a the integrand oscillates quickly and the cor-

responding integral, b′n, is small; while for pn < 1/a the integral is almost constant

and approximately equal to e−ipnka, therefore b′n ' bn. The different behaviors of

the integrand are shown in Fig. 5. This proves that Eq. (22) can be written as

φ(x) ' φlatt(a, x) ' φco(a, x)
def
=

∞∑

n=0

θ

(
1

a
− pn

)

bne
ipnx . (26)

The superscripts “latt” and “co” are used to identify the lattice and the cutoff

regularization schemes, respectively.

In other words the lattice cutoff a is equivalent to a momentum cutoff pmax <

1/ā, an ultraviolet cutoff. Therefore the lattice and the momentum cutoff are alter-

native but equivalent ways to regularize the PI.

Note that b0 is the mean value of φ(x) and p1 = 2π/L represents the minimum

energy/momentum mode that can propagate on a finite unidimensional volume of

length L. This is a lower limit, an infrared cutoff.

3. Pure Gauge Theories

3.1. Action

We consider a pure gauge theory and we restrict the gauge group G to U(1) and/or

SU(n). In order to be able to probe the gauge field we assume to have a single parti-

cle ψ of infinite mass and unit charge that we can move on the lattice as we please.

The Aharonov–Bohm experiment18 teaches us that the gauge field is not directly

measurable but if we move the test particle ψ from one point x to a point x′ along

a path C, the test charge acquires a phase that can be measured via interference

experiments

ψ(x′) = exp

(

ig

∫

C

Aµ(x)dxµ

)

ψ(x) , (27)
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where Aµ(x) is the gauge field in the continuum space. On a lattice the shortest

possible path is the link connecting two neighbor sites x and x+µ̂ (+µ̂ here indicates

a positive vector in direction µ and length equal to the lattice spacing a) therefore

the elementary lattice gauge degrees of freedom are not Aµ but

U(x, µ)
def
= exp

(

ig

∫ x+µ̂

x

Aµ(x)dxµ

)

' 1 + iagAµ

(

x+
1

2
µ̂

)

+O(a2) . (28)

For later convenience we also define

U(x,−µ)
def
= exp

(

ig

∫ x

x+µ̂

Aµ(x)dxµ

)

' 1 − iagAµ

(

x− 1

2
µ̂

)

+O(a2) . (29)

From the definition it follows that U(x,−µ) = U †(x− µ̂, µ).

For the rest of this section, the gauge links U(x, µ) will replace our generic

template field φ(x). The index µ is an integer that labels the vector component of

the gauge field.

Under a local gauge transformation ψ(x) → V (x)ψ(x) the field U transforms as

U(x, µ) → V (x)U(x, µ)V −1(x+ µ̂) . (30)

Any path C on the lattice can be identified with a set of links U(x[i], µ[i]) such that

exp

∫

C

Aµ(x)dxµ '
∏

i

U(x[i], µ[i]) . (31)

The most local gauge invariant one can build is called the plaquette and it is a

product of 4 links in a loop

P (x, µ, ν)
def
= Tr[U(x, µ)U(x+ µ̂, ν)U(x + µ̂+ ν̂,−µ)U(x+ ν̂,−ν)] . (32)

Here are some examples of plaquettes:

s s s s

s s s s

s s s s

s s s s

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

6
-

?�

6
pppppppp
pp

?
pppppppp
pp -pppppppp

pp�
pppppppp
pp

P (x, 1, 2)

P (x, 2, 3)
P (x, 1, 3)

The simplest lattice action SE one can engineer using the gauge field must

therefore be linear in P (x, µ, ν), real, and invariant under the lattice rotational

symmetry. Following the common notation, this simplest action can be written as

Sgauge
E

def
=

−β
2n

Re
∑

x,µ6=ν

P (x, µ, ν) , (33)

where n is the size of the gauge group (n = 1 for U(1)).
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Substituting Eqs. (28)–(32) in Eq. (33), one obtains

Sgauge
E ' −β

2n
Re
∑

x,µν

[

1 + iagAµ

(

x+
1

2
µ̂

)][

1 + iagAµ

(

x+
1

2
ν̂

)]

×
[

1 − iagAµ

(

x− 1

2
µ̂

)][

1 − iagAν

(

x− 1

2
ν̂

)]

' −β
2n

Re
∑

x,µν

[

1 + iagAµ − ia2g

2
∂νAµ

] [

1 + iagAµ +
ia2g

2
∂µAν

]

×
[

1 − iagAµ − ia2g

2
∂νAµ

] [

1 − iagAν +
ia2g

2
∂µAν

]

' −β
2n

Re
∑

x,µν

1 − a4g2

4
(∂µAν − ∂νAµ + g[Aµ, Aν ])2

' c+
β

2n

∑

x,µν

a4g2

4
FµνF

µν , (34)

where c is an overall irrelevant constant and Eq. (34) was derived from Eq. (33) via

a Taylor expansion around x+ 1
2µ+ 1

2ν.

Notice that 1
4Fµν(x)F µν (x) is the ordinary kinetic term for a continuum gauge

field and a4
∑

x is
∫

d4x in the continuum limit. Following this analogy,

β =
2n

g2
(35)

hence g is interpreted as the bare gauge coupling constant at the lattice scale a. For

non-Abelian gauge theories asymptotic freedom dictates that g goes to zero when

a goes to zero.

Equation (33) is called Wilson gauge action.19 The Wilson gauge action can

also be derived by direct discretization of the continuum gauge action by ignoring

everything but the lowest order terms in a.

For large β the trace of the average plaquette is close to n, perturbative effects

dominate and this results in small quantum fluctuations, and small/slow changes in

the configurations generated by the MCMC algorithm. For small β the average pla-

quette is close to 0, nonperturbative effects dominate which results in large/nonlocal

quantum fluctuations, and relatively big changes in the configurations generated by

the MCMC.

3.2. Algorithms

Because of the locality of the Wilson gauge action, for every link U(x, µ) one can

rewrite the action as

Sgauge
E =

−β
2n

Re TrU(x, µ)R(x, µ) + · · · , (36)
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where the dots represent the sum over plaquettes that do not include U(x, µ) and

R(x, µ) =
∑

ν 6=µ

U(x+ µ̂, ν)U(x+ µ̂+ ν̂,−µ)U(x+ ν̂,−ν)

+U(x+ µ̂,−ν)U(x+ µ̂− ν̂,−µ)U(x− ν̂, ν) (37)

are referred to as staples. A 3D projection is represented in the image below:

s s s s

s s s s

s s s s

s s s s

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

` ` ` ` ` ` ` ` ` `

�

�
�

�
ppppppp
ppppppp
pppppp

ppppppp
ppppppp
pppppp

This makes the Gibbs sampling algorithm more efficient than the Metropolis

because it is possible to change a single link U(x, µ) = U old → U(x, µ) = Unew at

one time without having to recompute the entire action. In fact, the accept–reject

step only depends on the variation of the action given by the first term in Eq. (36):

δSgauge
E =

−β
2n

Re Tr[(Unew − Uold)R(x, µ)] . (38)

There are many algorithms that are similar to the Gibbs sampling but more

efficient. One of the most common is the heatbath.20

In order to make a MCMC step, whether global in the Metropolis or local in

the Gibbs sampling and derived algorithms, one must be able to generate a new

link at random with uniform probability in the gauge group G.

For G = U(1) it is sufficient to generate a uniform random number u ∈ [0, 1]

and update

U(x, µ) → U ′(x, µ) = e2πiu . (39)

For G = SU(2) one can use the map between SU(2) and SO(3) (the symmetry

group of a 3-sphere), generate a uniform point on a 3-sphere (u0, u1, u2, u3) and

map it back into SU(2) via

U(x, µ) → U ′(x, µ) = u0 + u1σ1 + u2σ2 + u3σ3 . (40)

where σi are the Pauli matrices.

For G = SU(n) and n > 2 there is no exact technique but a common recursive

technique21 consists of

U(x, µ) → U ′(x, µ) =
∏

i<j

Gij , (41)

where Gij are random SU(2) matrices that acts on the ij subgroup of SU(n).

The general algorithm is reported in Fig. 6.
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1 Algorithm: Generate a random SU(n) matrix
2 Input: n
3 Output: A
4

5 if n == 1 return exp(2π i uniform())

6 A = n× n identity matrix
7 for i = 0 to n− 2

8 for j = i+ 1 to n− 1

9 α = π uniform()

10 φ = 2 uniform()

11 cos(θ) = 2 uniform() − 1

12 sin(θ) =
√

1 − cos2(θ)

13 u0 = cos(α)

14 u1 = sin(α) sin(θ) cos(φ)

15 u2 = sin(α) sin(θ) sin(φ)

16 u3 = sin(α) cos(θ)

17 G = u0 + u1σ1 + u2σ2 + u3σ3

18 A′ = A

19 for k = 0 to n− 1

20 A′ ik = G00Aik +G01Ajk

21 A′ jk = G10Aik +G11Ajk

22 A = A′

23 return A.

Fig. 6. General algorithm for generating a random element in a U(1) and/or SU(n) gauge group
with uniform distribution within the group. For SU(2) it uses the invertible map in SO(3) and for
SU(n > 2) it generates the matrix as product of SU(2) subgroups. The function “uniform()” is
assumed to return a uniform random number in (0, 1).

3.3. Example: Quark antiquark potential

According to Quantum Mechanics, a state consisting of one static quark and one

static antiquark separated by a distance r evolves in time by acquiring a phase

eiHt where H , the Hamiltonian, is equal to the static potential between the quarks

H = V (r). In fact, kinetic contribution to H is zero because the quarks are static.

On a Euclidean lattice the same state evolves according to e−V (r)t, therefore

the potential V (r) can be determined by computing the lattice expectation value

of the operator that corresponds to this system.

The quark and the antiquark have to be created at the same point, separated

at distance r, evolve for a time t and then reunite and annihilate. Due to the fact

that an antiquark is nothing other than a quark propagating backwards in time,

the operator that corresponds to this system is the product of links around a square

path of size r × t:

P r×t(x)
def
= U(x, µ)U(x + µ̂, µ) · · ·U(x+ (r − 1)µ̂, µ)U(x+ rµ̂, ν)

×U(x+ rµ̂ + ν̂, ν) · · ·U(x+ rµ̂+ (t− 1)ν̂, ν)U(x+ rµ̂ + tν̂,−µ)

×U(x+ (r − 1)µ̂+ tν̂,−µ) · · ·U(x+ µ̂+ (t− 1)ν̂,−µ)

×U(x+ tν̂,−ν)U(x+ (t− 1)ν̂,−ν) · · ·U(x+ ν̂,−ν) . (42)
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1 Algorithm: Compute the static quark-antiquark potential
2 Input: β, size of gauge group n, number of MCMC steps N
3 Output: V (r)

4

5 Create local array V (r) and initialize it to zero
6

7 for each lattice site x
8 for each direction µ
9 set U(x, µ) to a random element of the gauge group SU(n)

10

11 for c = 1 to N
12 replace U with the next configuration in the MCMC (use β)
13 for each lattice site x
14 for each rectangular path r × t starting in x
15 compute P r× t(x), the product of links along the path
16 compute v = −log(P r× t(x))/(t × L4)

17 add v to V (r)

18 return V (r)

Fig. 7. Example of algorithm to compute the static quark–antiquark potential. Notice the role
of steps 7–9 is to create the initial configuration, step 11 loops over the Markov chain, step 12
creates the next configuration in the chain (using Metropolis, Gibbs sampling or other algorithm),
steps 13–16 measure the operator, and step 17 averages the results.

The static potential can therefore be determined by measuring the left-hand

side of

〈0|
∑

x

P r×t(x)|0〉 ∝ e−V (r)t (43)

that is measuring

V (r) = −1

t
log

(

1

N

∑

U,x

Re TrP r×t(x)

)

. (44)

Figure 8 shows the result of this computation.22 The open squares represent

the static potential for a pure SU(3) gauge field theory in 4D (s = 4) referred

to as quenched QCD. Notice that, for long distance, V (r) ' σr where σ is the

string tension. The solid points in figure represent the same static potential with

a gauge field coupled to two dynamical light quarks for two different values of the

quark mass, m. We expect a change of regime when V (x) > 2m. In fact, according

to current models of confinement,23 when the static potential exceeds the energy

required to create a new couple of quark and antiquark, these new particles pop

up from the vacuum and screen the interaction between the original static quarks.

The plot shows an indication of this phenomenon.



February 17, 2006 14:42 WSPC/139-IJMPA 02896

424 M. Di Pierro

1 2 3 4 5
Ra

0.6

0.8

1

Q
-Q

ba
r P

ot
en

tia
l

quenched
κ=.1570
κ=.1597

Fig. 8. The static quark potential for quenched and two flavor dynamical QCD for different
masses of the sea quarks.22 Results are in units of the lattice spacing.

4. Fermions

Fermions, here identified by ψ, are solutions of the Dirac equation. The latter can

be derived from the continuum Euclidean action

SDirac
E =

∫

d4xψ̄i
α(x)(γµ

αβD
ij
µ +mδαβ)ψj

β(x) , (45)

where Dµ = ∂µ + igAµ(x) is the covariant derivative, αβ are spin indices and ij

are gauge indices.

From now on the gauge indices ij will often be omitted and we will restrict to

4D, s = 4, since fermions are only defined for even number of dimensions.

Notice that because of the Wick rotation, gamma matrices have to be rotated

too. The Euclidean gamma matrices are Hermitian (γ†µ = γµ) and satisfy {γµ, γν} =

2δµν . Two possible choices for Euclidean gamma matrices in four dimensions are

listed in Appendix.

In the absence of gauge interaction, Dµ = ∂µ and the simplest symmetrical

discretized derivative looks like

∂µψ(x)
def
=

1

2
[ψ(x + µ̂) − ψ(x − µ̂)] . (46)

The most local generalization of Eq. (46) that preserves the gauge invariance of the

action is

Dµψ(x)
def
=

1

2
[U(x, µ)ψ(x + µ̂) − U †(x− µ, µ)ψ(x − µ̂)] . (47)
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With this definition for the derivative, Eq. (45) becomes

SDirac
E =

∑

x,x′

ψ̄α(x)Qαβ(x, x′)ψβ(x) (48)

and Q is called fermionic matrix

Qnaive
αβ (x, x′) = mδx,x′δαβ +

∑

µ

γµ
αβ

1

2
[U(x, µ)δx+µ̂,x′ − U(x,−µ)δx−µ̂,x′ ] . (49)

There is still a problem with this naive action. The quark propagator S is defined

as the inverse of the fermionic matrix Q, i.e.

Sij
αβ(x, x′)

def
= 〈0|T{ψj

β(x′), ψ̄i
α(x)}|0〉 = (Q−1)ij

αβ(x, x′) . (50)

In the absence of gauge field (U(x, µ) = 1) for a massless quark (m = 0),

for a single Fourier component of the fermionic field (ψ(x) = eipµxµ

) the inverse

propagator reads

S−1 = Q = m+ i
∑

µ

γµ sin(pµ) (51)

(pµ is in units of 1/a here). This propagator has 16 poles as opposed to the single

pole at p = 0 for the continuum propagator. The additional poles arise when the

spatial components of p are equal to π.

The physical interpretation of the additional poles is that this naive discretiza-

tion of the action describes 16 degenerate fermions as opposed to a single one. Dif-

ferent solutions to this problem lead to different implementations of lattice fermions.

We consider here Wilson, clover, staggered, overlap, and domain wall fermions.

4.1. Wilson fermions

Wilson proposed to remove the additional poles by giving mass to the corresponding

modes.19 This is done by adding a new term to the Lagrangian proportional to

rψ̄α(x)DµD
µψα(x) . (52)

This corresponds to replacing Eq. (49) with

Qαβ(x, x′) = (m+ 4r)δx,x′δαβ − 1

2

∑

µ

[(r − γµ)αβU(x, µ)δx+µ̂,x′

− (r + γµ)αβU(x,−µ)δx−µ̂,x′ ] . (53)

Introducing the definition

κ =
1

2m+ 8r
(54)

and scaling the field ψ, Eq. (53) can be rewritten as (omitting spin indices)

QW(x, x′) = δx,x′ − κ
∑

µ

[(r − γµ)U(x, µ)δx+µ̂,x − (r + γµ)U(x,−µ)δx−µ̂,x′ ] (55)
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which is the standard form for the Wilson fermionic matrix. Notice that any value

of r > 0 will do the job and one usually chooses r ≡ 1. The choice r = 0 corresponds

to the naive action Eq. (49).

In the Wilson fermionic action the fermion mass is traded in for the adimensional

parameter κ defined in the asymptotically free limit by Eq. (54). In the presence

of gauge interaction, κ is renormalized and Eq. (54) holds only approximatively.

This renormalization shifts the value of κ that corresponds to chiral fermions (m =

0). From now on we will identify with κ∗ that value of κ that corresponds to a

chiral fermion. κ∗ is not known a priori but it can be determined numerically as it

corresponds to a pole of Q−1.

For Wilson fermions on a cold configurations, U ≡ 1, the fermion propagator

reads

S−1 = Q = m+ i
∑

µ

γµ sin(pµ) + 2r
∑

µ

sin2(pµ/2) . (56)

The main problem with Wilson fermions is that the fermionic matrix for m = 0

does not anticommute with γ5 and therefore the action is not invariant under the

global chiral symmetry

ψ(x) → eiγ5θψ(x) , ψ̄(x) → ψ̄(x)eiγ5θ (57)

which is a symmetry of the continuum Dirac action.

The breaking of chiral symmetry invalidates chiral perturbation theory which

is used to guide the extrapolation of the spectrum to the limit m → 0. This ex-

trapolation is crucial in order to compute correlations involving fermions with mass

smaller than 1/a.

4.2. Clover fermions

The simplest way to Symanzik improve Wilson fermions is by shifting fermions

according to

ψ(x) → (1 + cγµDµ)ψ(x) (58)

and tune c in order to cancel any O(a) dependence in the correlations. The effect

on the action is the same as replacing24,25

QSW(x, x′) = QW (x, x′) − ircSW

4

∑

µ6=ν

γµγνFµν(x) , (59)

where Fµν = [Dµ, Dν ] is a lattice version of the electromagnetic tensor which, in

terms of the links, can be expressed as

Fµν = (B − B†)/8 ,

B = P (x, µ, ν) + P (x, µ,−ν) + P (x,−µ, ν) + P (x,−µ,−ν) .
(60)

Equation (48) with (59) is referred to as Sheikoleslami–Wohlert (SW) action or

simply clover action because of the expression for F , Eq. (60).
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The value of the coefficient cSW does not affect the results in the continuum

limit a→ 0 but does affect the rate of convergence in this limit and the symmetry

restoration for those symmetries broken by the lattice.

There are three standard techniques to choose the parameter cSW

• 1-loop improvement26

cSW = 1 + 1.5954/β (61)

• Tadpole improvement27 (i.e. resumming the contribution of all tadpole graphs to

the renormalization of the tree-level cSW).

cSW =
1

u3
0

(62)

where u0 is the average of 1
3Re TrP (x, µ, ν) and it can be extracted from numer-

ical simulations.

• Nonperturbative improvement.26 This is the most sophisticated technique. The

idea behind it is that of determining the improvement coefficients for the different

operators (including cSW) by measuring independently on lattice the left and

right-hand side of Ward identities and imposing the constraint that they coincide.

The results for cSW can be summarized by the following fitting function (valid

only for β > 5.7)

cSW =
β3 − 3.648β2 − 7.254β + 6.642

β3 − 5.2458β2
. (63)

Even if different techniques give different results for cSW they are consistent with

each other provided the operators are improved by adopting the same procedure.

Whichever improvement technique is used, the SW action generates correlation

amplitudes that converge to the continuum limit up to correction of the second order

in a and order 1 in g2 (for 1-loop) or exactly (for nonperturbative improvement).

4.3. Heavy fermions and Fermilab action

As mentioned previously the lattice regularization acts as infrared cutoff and pre-

vent particles with mass mQ higher than 1/a to propagate properly. This presents

a problem for the simulation of heavy quarks since in typical LQCD computations

the lattice spacing is of the order of (2 GeV)−1. There are four ways to implement

heavy fermions on the lattice.

Extrapolation: Perform simulations with fermion masses lighter than the cut-

off, m < 1/a, and extrapolate at the physical heavy fermion mass m→ m̄Q.

Static fermions: Perform simulations in the static limit, mQ → ∞. In this limit

the Wilson action becomes the HQET30 action with fermionic matrix given by

QHQET(x, x′) =
1 − γ0

2
U(x, 0)δx+0̂,x +

1 + γ0

2
U(x,−0)δx−0̂,x′ . (64)
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In this limit a fermion propagator is known exactly and it is the product of links

in the time direction

S(x, x′) =
1 + γ0

2
U(x, 0)U(x+ 0̂, 0) · · ·U(x′ − 0̂, 0)δx,x′θ(x0 − x′0)

+
1 − γ0

2
(U(x, 0)U(x+ 0̂, 0) · · ·U(x′ − 0̂, 0))†δx,x′θ(x′0 − x0) . (65)

Notice how static fermions require only one spin component because no term in the

action mixes different spin components. Computations in the static limit are also

useful to guide the extrapolation in the approach previously mentioned.

Nonrelativistic limit: Adopt a nonrelativistic approach (NRQCD) and per-

form an expansion of the fermionic action around the on-shell momentum31 of prop-

agating fermions pµ = pon-shell
µ + kµ. Nonrelativistically pon-shell

µ = mQvµ where vµ

is the on-shell velocity of the heavy fermion and kµ is the off-shell momentum.

In QCD, kµ is of the order ΛQCD. This expansion results in the NRQCD action

described by the fermionic matrix

QNRQCD(x, x′) = iγ0(D0 + v · D +O(1/mQ)) . (66)

NRQCD fermions require two spin components which are mixed by O(q/m2
Q) terms.

Corrections can be taken into account systematically.

Fermilab action: The Fermilab action is an effective action that interpolates

smoothly between the regular fermions and the static limit, and eliminates errors

proportional to (amQ)n. This is achieved by taking Wilson fermions with the clover

action and introducing different couplings for spacelike and timelike interaction

terms in the Lagrangian. Moreover, in the spirit of Symanzik, higher order operators

are added to the Lagrangian to cancel discretization terms that become sizable

for large masses. A discussion of these operators up to dimension 4 in ΛQCD/mQ

(HQET) and dimension 8 in vµγµ (NRQCD) can be found in Refs. 28 and 29.

4.4. Staggered fermions

The Kogut–Susskind fermions, also known as staggered fermions provide an alter-

native to Wilson fermions.

The idea of Kogut and Susskind is that of interpreting the 16 poles of the naive

fermion propagator, Eq. (51), as due to the four spin components of four different

types of fermions, here referred as flavors, which live on a blocked lattice32–36 as

shown in Fig. 9.

In order to introduce staggered fermions, we will adopt the following notation.

• x, x′ will indicate points on the full lattice.

• y, y′ will indicate points on the blocked lattice.

• z will label the vertices of a hypercube of side a so that each x has a unique

representation as y + z. zµ ∈ 0, 1 are the four-space–time components of z.
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Fig. 9. Graphical representation of a 2D lattice and its blocked lattice (left). The center figure
represents an example of an incorrect two-point correlation amplitude between staggered fermions.
The right figures represents two correct two-point correlation amplitudes corresponding to different
blockings of the same lattice.

• ψaα(y) will represent the four fermion flavors where a is the flavor index and α

is the spin index. Note that ψ is now defined on the blocked lattice.

• χ(x) will indicate the proper staggered field which corresponds to ψ but is defined

on the full lattice.

• We will omit the color index since the formalism is completely transparent to it.

The map between naive lattice fermions and staggered fermions is realized by

ψaα(y) =
1

2

∑

z

Ω(y + z)aαP(y, y + z)χ(y + z) , (67)

where

Ω(x)
def
= γx0

0 γx1

1 γx2

2 γx3

3 (68)

and P(y, y+z) is a product of links connecting y to y+z that makes ψ(y) transform

correctly under local gauge transformations. The map in Eq. (67) between ψ ↔ χ

is invertible.

The naive action of Eqs. (48) and (49) after substituting in Eq. (67) becomes

SE =
∑

y

ψ̄aα(y)(γαβ
µ Dµ +m)ψaβ(y)

=
∑

y,z,z′

χ†(y + z)Ω†(y + z)P(γµDµ +m)PΩ(y + z′)χ(y + z′)

=
∑

x,µ

η(x, µ)

2
[χ†(x)U(x, µ)χ(x + µ) − χ†(x)U(x,−µ)χ(x − µ)]

+
∑

x

m|χ(x)|2

=
∑

x,x′

χ†(x)QKS(x, x′)χ(x′) , (69)

where

η(x, µ) =
1

4
tr{Ω†(x)γµΩ(x± µ)} = (−1)

∑

ν<µ xν (70)
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and

QKS(x, x′) = mδx,x′ +
1

2

∑

µ

η(x, µ)[U(x, µ)δx+1,x′ − U(x,−µ)δx−1,x′ ] . (71)

Notice that in deriving the staggered action one uses a derivative term Dµ

defined on the full lattice and not on the blocked lattice. This has the effect

of coupling the different fermions in nontrivial ways and breaks the continuum

SU(4)flavor × SU(4)spin symmetry down to the discrete subgroup SW4 × Γ4 where

SW4 is the hypercubic subgroup of Euclidean rotations, SO(4), and Γ4 is the Clif-

ford algebra generated by the γ matrices. This symmetry breaking allows us to

identify the different flavors.

In fact, in the naive discretization of the action (45) the doubling problem is

related to the lattice symmetry37

ψ(x) → ψ̃(x) =
∏

µ

(iγ5γµ)zµeix·zπψ(x) , (72)

where z is in the hypercube. Equation (72) suggests that the naively discretized

Eq. (45) contains interaction terms that couple one fermion mode into another

by emission of a hard gluon. For staggered fermions these modes correspond to

different flavors and, therefore, can be distinguished.

While Wilson fermions completely break the axial symmetry, staggered fermions

break SU(4)V × SU(4)A only partially and the subgroup U(1)V × U(1)A remains

unbroken thus preserving some form of the PCAC relations38 which are important

to guide the extrapolation to the chiral limit of quantities of phenomenological

interest involving light fermions.

Another advantage of staggered fermions over Wilson fermions is that the inver-

sion of the corresponding fermionic matrix Q, i.e. the computation of the fermion

propagator, is about eight times faster for the same lattice size.

One disadvantage of staggered fermions is that they entangle space–time and

flavor symmetries thus making it difficult to engineer physical states of definite

quantum numbers.

In terms of the spinors the most general pseudoscalar meson can be written as

πξ(y) = ξabψ̄α,a(y)Γαβψβ,b(y) , (73)

where Γ is γ5 or γ0γ5.

For this operator to have the quantum numbers of a pion, ξab must be an element

of the 15 representation of SU(4)flavor. The choice ξab = δab would correspond to

the singlet, the η1.

Different choices of basis for the ξab matrices are present in the literature and

they are equivalent to each other up to an unitary transformation since there is only

one irreducible representation of the Clifford algebra in dimension 4, the algebra of

ordinary gamma matrices (associated to the group Γ4). Therefore, according with

usual conventions, we choose the following basis for the ξ matrices

ξ(5) = (γ5)∗ , ξ(µ) = (γµ)∗ , ξ(µ5) = (γµγ5)∗ , ξ(µν) = (γµγν)∗ . (74)
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Figure 9 represent a lattice, a blocked lattice, and how staggered mesons may

propagate from one hypercube to another hypercube. Notice that source and desti-

nation hypercube has to be consistent with the same blocking of the lattice or the

meson propagator will correspond to a nontrivial mix of the different mesons and

will exhibit an oscillating behavior.

Staggered fermions with the action Eq. (69) converge quadratically to the con-

tinuum. One way to Symanzik improve this action and achieve O(a2) improvement

is by replacing each link that appears in Eq. (71) with a weighted sum of links and

paths connecting the same end points as the link. The choice of the weight factors

that cancels all O(a2) effects is called ASQTAD action.39

4.5. Chiral fermions: Overlap

In continuum space the massless fermionic matrix is Q =
∑

µ γ
µ(∂µ + igAµ) and it

satisfies the chirality condition

Qγ5 + γ5Q = 0 . (75)

Therefore the eigenstates of PL = (1 − γ5)/2 and PR = (1 + γ5)/2 are not mixed

by the action. The only term in the action that couples L and R chirality states is

the mass term.

Equation (75) does not hold for QW, QSW and QKS and, in fact, the Nielsen–

Ninomiya theorem40 states that it is not possible to define a local, translationally

invariant, Hermitian Q that preserves chiral symmetry and does not cause doublers.

Nevertheless, one may look for a fermion formulation on the lattice that exhibit

chiral symmetry and no doublers by requiring that chiral symmetry holds for on-

shell states only. For on-shell states chiral transformation can be written as

ψ → eiθγ5(1−aQ/2)ψ , ψ̄ → ψ̄eiθγ5(1−aQ/2) . (76)

In fact on shell Qψ = 0 and Eq. (76) becomes the ordinary chiral symmetry trans-

formation. Requiring that the fermionic matrix Q be invariant under infinitesimal

transformation leads to the Ginsparg–Wilson relation

Qγ5 + γ5Q = aQγ5Q . (77)

Neuberger41,42 proposed the first fermionic matrixQ that satisfies the Ginsparg–

Wilson relation and thus provides exact chiral symmetry on the lattice

QOverlap = 1 + γ5 sign[γ5(QW − 1)] . (78)

This formulation is referred to as overlap fermions.

Since any Hermitian matrix Σ can be written as Σ = ΛDΛ† where D is a

diagonal matrix, one can define any function f of a Hermitian matrix via

f(Σ) = Λf(D)Λ† (79)

and f(D) is a diagonal matrix with diagonal elements given by f(D)ii = f(Dii).

The argument of sign function in the definition of the overlap fermionic matrix is

Hermitian therefore Eq. (78) is well defined.
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The sign function can be approximated by polynomials and, in general, it is more

difficult to deal with than Wilson, clover or even staggered fermions. All numeri-

cal techniques47 for calculating a detQOverlap as required for dynamical fermions

and for calculating (QOverlap)−1 can be viewed as different ways of approximating

Eq. (78).

4.6. Chiral fermions: Domain wall

An alternative way to implement lattice chiral fermions was developed by Kaplan43

in 1992. It is referred to as using Domain Wall (DW) fermions.44–47 This formula-

tion consists of replacing each fermion ψα(x) with multiple fermions labeled by a

new index k,

ψα(x) → Ψα,k(x) . (80)

The DW action is

SDW
E =

∑

x,k

Ψ̄α,k(x)QDW
αβ,kk′ (x, x′)Ψβ,k′(x′) , (81)

where

QDW
αβ,kk′ (x, x′) = QW

αβ(x, x′)δkk′

+ (PL)αβθ(k < N5 − 1)δk+1,k′ + (PR)αβθ(k > 0)δk−1,k′

+ (PL)αβδk,N5−1δk′,0 + (PR)αβδk,0δk′,N5−1 . (82)

k5 and N5 are parameters of the model. The index k runs from 0 to N5 − 1 and

it is usually interpreted as a fifth dimension of the system. Notice that the gauge

field that appears in QW is independent on this fifth dimension.

The computation of ψ′ = Q−1ψ for a regular four-dimensional input fermionic

field ψ is performed in three steps.

• The input field ψ is mapped into the five-dimensional DW field Ψ. L components

are mapped into the k = 0 slice and R components are mapped into the k = N5−1

slice:

Ψα,0(x) = (PL)αβψβ(x) , (83)

Ψα,k(x) = 0 for 0 < k < N5 − 1 , (84)

Ψα,N5−1 = (PR)αβψβ(x) . (85)

• The DW fermionic matrix, Eq. (82), is inverted numerically using one of the

algorithms explained later:

Ψ′ = (QDW)−1Ψ . (86)

• The output DW field Ψ′ is mapped back into the output four-dimensional field

ψ′ by

ψ′
α(x) = (PL)αβΨ′

β,0(x) + (PR)αβΨ′
β,N5−1(x) . (87)
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The effect of the DW action is that of projecting the L modes of the 4D fermion

to one wall and the R modes to the other wall, thus different chiralities are mixed

only by the explicit mass term in QDW, Eq. (82). The use of the Wilson action in

each slice of the extra dimension k guarantees that no doublers are present.

It is possible to translate the DW fermions into an equivalent four-dimensional

approximation for the Neuberger operator,48 Eq. (78) and therefore QOverlap is

a local operator. In fact, any rational polynomial approximation of the overlap

operator is equivalent to a domain wall formulation with a finite fifth dimension.49

4.7. Quenched and dynamical fermions

Including fermionic field variables in the MCMC configurations is not practical.

The usual technique to deal with fermions is integrate them out analytically so

that fermions do not appear in the PI measure.

Let us consider a system consisting of a gauge field coupled to nf degenerate

fermions

SE = Sgauge
E + nfSfermi

E

=
−β
2n

∑

x,µ6=ν

Re TrP (x, µ, ν) + nf

∑

x,y

ψα(x)Qαβ(x, y)ψβ(y) . (88)

For a typical correlation amplitude, fermions can be integrated out as follows:

〈0| · · ·ψα(x)ψ̄β(x′) · · · |0〉 =

∫

[dU ][dψ] · · ·ψα(x)ψ̄β(x′) · · · e−S
gauge

E
−nfS

fermi
E (89)

=

∫

[dU ] · · ·Q−1
αβ(x, x′) · · · e−S

gauge

E
+nf log detQ (90)

=
1

N

∑

U

· · ·Q−1
αβ(x, x′) · · · (91)

where the field configurations are now generated at random by sampling from a

probability distribution proportional to exp(−S full
E ) with

Sfull
E = Sgauge

E − nf log detQ . (92)

In case the correlation amplitudes involve multiple possible Wick contractions,

one has to sum over all possible Wick contractions:

〈0| · · ·ψα(x)ψ̄β(x′) · · ·ψγ(x′′)ψ̄δ(x′′′)|0〉

=
1

N

∑

U

· · ·Q−1
αβ(x, x′) · · ·Q−1

γδ (x′′, x′′′) · · · + · · ·Q−1
αδ (x, x′′′) · · ·Q−1

γβ (x′′, x′) · · · . (93)

For staggered fermions, since QKS represents four degenerate flavors as opposed

to a single one, therefore Eq. (92) must be replaced by

Sfull KS
E = Sgauge

E − nf

4
log detQKS . (94)
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It is still debated whether the above procedure is correct, since there is no

known local operator that corresponds to the fourth root of QKS. Anyway, there

are indications from numerical studies50 in 2D that the following relation may hold

in 4D:

(detQKS)1/4 = detQOverlap +O(a2) (95)

which would provide a solid theoretical justification for Eq. (94).

From the definition it is evident that Q is a sparse matrix. For Wilson fermions

its dimensions are M × M and M = 8n(L/a)4 (real and imaginary part × 4

spin components ×n color components × number of lattice sites); Q has diagonal

elements set to 1 and has only 4 other elements different from zero for each row

and column (corresponding to +µ and −µ). For staggered fermions QKS is 16 times

smaller because it has no spin indices and this makes its inversion much faster.

For domain wall fermions QDW is N2
5 larger than QW thus making the inversion of

domain wall fermions much slower than for Wilson fermions.

One approximation that has been used and abused consists of setting nf = 0 in

the full action. This approximation is called quenching. It has the effect of ignoring

second quantization for fermions. This is equivalent to, in a perturbative language,

ignoring fermion loops. Quenching introduces unknown systematic errors in the

computation and its only justification is that the computation of detQ is nonlocal

therefore generating the Markov Chain with nf 6= 0 is very computing intensive.

For some quantities such as the static quark potential, Fig. 8, the effect of

quenching is very small. For other quantities such as the light spectrum of QCD,

its effect is sizable, Fig. 16. Quenching also affects the behavior of the spectrum in

the chiral limit as explained in Ref. 51.

The contributions detQ to the action is referred to as dynamical fermions or

sea quarks in the context of LQCD.

4.8. CPTH theorem on the lattice

Lattice correlation amplitudes computed using the action in Eq. (88) are invariant

under charge conjugation, C, parity, P , time reversal, T , and a new symmetry,

H . These symmetries apply to the measurement of an operator on each gauge

configuration U .

It is useful to write how these symmetries affect a fermion propagator S = Q−1

and make explicit the dependence on all indices and on the gauge configuration U .

• Charge conjugation, C:

Sij
αβ(x, y, U) = (γ0γ2)αα′Sji

α′β′(y, x, U
C)(γ2γ0)β′β (96)

• Parity, P :

Sij
αβ(x, y, U) = γ0

αα′S
ij
α′β′(x

P , yP , UP )γ0
β′β (97)

• Time reversal, T :

Sij
αβ(x, y, U) = (γ0γ5)αα′Sij

α′β′(x
T , yT , UT )(γ5γ0)β′β (98)
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• H symmetry:

Sij
αβ(x, y, U) = γ5

βα′S
ji
α′β′(y, x, U)γ5

β′α (99)

UP , UC , UT are the parity reversed, charge conjugate, and time reversed gauge

configurations respectively.

4.9. Inversion algorithms

One way to invert the matrix Q is by using a stochastic technique.

In fact for any Hermitian positive definite matrix Σ the following exact relation

holds:

Σ−1
ij =

1

Z

∫

dφ0 · · · dφn−1φ
∗
jφie

−φ∗
nΣnmφm (100)

And substituting in the above equation Σ = Q†Q and multiplying both terms by

Q† one obtains

(Q−1)ij
αβ(x, x′) =

1

Z

∫

[dφ](Qφ)j∗
β (x′)φi

α(x)e−φ†(Q†Q)φ . (101)

This multidimensional integral can be computed via Monte Carlo. The field φ in

this context is usually referred to as pseudofermionic field. The stochastic com-

putation of the full inverse propagator must be done for each gauge configuration

and therefore it is computationally expensive. Various techniques for reducing the

variance in the integration and reduce the statistical noise have been proposed by

many authors.52,53

In most cases one does not need the full inverse Q−1 and it suffices to solve in

ψ′ the equation

Qψ′ = ψ ↔ ψ′ = Q−1ψ (102)

for a small set of given input vectors ψs. This inversion can be performed by mini-

mizing the norm of the residual vector

r = ψ −Qψ′ . (103)

The two algorithms commonly used for performing this numerical minimization are

the Minimal Residual, Fig. 10 and Stabilized Biconjugate Gradient Fig. 11.c

cIn writing fermionic algorithms we adopted the following notation:

ψ′ · ψ →
∑

x,α,i

ψ′i∗
α (x) = ψi

α(x) ,

|ψ|2 →
∑

x,α,i

ψi∗
α (x) = ψi

α(x) ,

ψ′ = Qψ → ψ′i∗
α (x) =

∑

y,β,j

Qij

αβ
(x, y)ψj

β
(y) .

(104)
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1 Algorithm: Minimal Residual Inverter
2 Input: ψ, Q
3 Output: ψ′

4 Temporary fields: q,r
5

6 r = ψ −Qψ

7 ψ′ = ψ

8 do
9 q = Qr

10 α = (q · r)/(q · q)
11 ψ′ = ψ′ + α r

12 r = r − α q

13 residue = r · r
14 while residue > precision

Fig. 10. Minimal Residual, a numerical algorithm to compute ψ′ = Q−1ψ by minimizing
Qψ′ = ψ.

1 Algorithm: Stabilized Biconjugate Gradient
2 Input: ψ, Q
3 Output: ψ′

4 Temporary fields: p,q,r,s,t
5

6 ψ′ = ψ

7 r = ψ −Qψ

8 q = r

9 p = 0 (zero field)
10 s = 0 (zero field)
11 ρ = ρ′ = α = ω = 1

12 do
13 ρ = q · r
14 β = (ρ/ρ′)(α/ω)

15 ρ′ = ρ

16 p = r + β p− βω s

17 s = Qp

18 α = ρ/(q · s)
19 r = r − α s

20 t = Qr

21 ω = (t · r)/(t · t)
22 ψ′ = ψ′ + ω r + α p

23 residue = r · r
24 while residue > precision

Fig. 11. Stabilized Biconjugate Gradient, another numerical algorithm to compute ψ′ = Q−1ψ
by minimizing Qψ′ = ψ.



February 17, 2006 14:42 WSPC/139-IJMPA 02896

An Algorithmic Approach to Quantum Field Theory 437

4.10. Dynamical fermions algorithms

For any Hermitian matrix Σ,

det Σ =
1

Z

∫

dφ0 · · ·dφn−1e
−φ∗

n(Σ−1)nmφm . (105)

Thus for two degenerate flavors the contribution to the action due to fermions is

(detQ)2 = detQ†Q =
1

Z

∫

[dφ]e−φ†(Q†Q)−1φ , (106)

where φ are pseudobosonic fields. Equation (106) can be evaluated numerically

using Monte Carlo.

Various techniques based on the above equation have been developed to speed

up the MCMC and to take into account odd numbers of dynamical quarks.

The most common MCMC algorithm for dynamical fermions is the Hybrid

Monte Carlo algorithm discussed in Refs. 54 and 55.

The technique used in Ref. 22 consists of observing that detQ†Q = (det γ5Q)2

where γ5Q is Hermitian, and approximating the determinant with a truncated

determinant, defined as the product of the eigenvalues of γ5Q below some cutoff.

The eigenvalues are computed by diagonalizing γ5Q using the Lanczos algorithm.

One of the most promising techniques in terms of efficiency for light fermion

mass is a version of the Hybrid Monte Carlo based on the Schwartz Alternating

Procedure discussed in Refs. 56 and 57.

Theoretical work on algorithms for dynamical overlap fermions are proposed

in Refs. 58 and 59. Some preliminary phenomenological results can be found in

Ref. 60. Algorithms for dynamical domain wall fermions are discussed in Refs. 61

and 62.

4.11. Example: Pion mass and decay constant

We consider here, as an example, the computation of the mass of the pion, mπ, and

the pion decay constant, fπ, for a SU(n) gauge theory (for n = 3 this is QCD) as

defined by the action in Eq. (92).

In order to be able to put a pion on the lattice one needs to have a definition

of the former, i.e. one needs to have an operator function of the gauge and quark

fields that has the pion as lowest eigenstate.

The pion is the lightest pseudoscalar in the theory and the simplest operator

that transforms as a pseudoscalar under rotations is

Ψπ(x)
def
=
∑

α,β

ψ̄(x)αγ
αβ
5 ψβ(x) . (107)
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1 Algorithm: Compute the static quark-antiquark potential
2 Input: β, κ, size of gauge group n, number of MCMC steps N
3 Output: Cπ(t)

4

5 Create local array Cπ(t) and initialize it to zero
6

7 for each lattice site x
8 for each direction µ
9 set U(x, µ) to a random element of the gauge group SU(n)

10

11 for c = 1 to N
12 replace U with the next configuration in the MCMC
13 for each spin component a
14 for each color component i
15 make a field ψ(x) = 0

16 for each lattice site x on timeslice x0 = 0

17 set ψα,i(x = 0) = 1

18 compute ψ′ = Q−1ψ

19 for each lattice site x
20 add |ψ′(x)|2 to Cπ(t = x0)

21 return Cπ(t)

Fig. 12. Example of algorithm to compute a pion propagator. Notice the role of steps 7–9 is
to create the initial configuration, step 11 loops over the Markov chain, step 12 creates the next
configuration in the chain (using Metropolis, Gibbs sampling or other algorithm), steps 14–18
measure the operator, and steps 19–20 average the results separately for each lattice time-slice.

We identify with |Ek〉 its eigenstates and Ek the corresponding ordered eigenvalues

so that, by definition, E0 is mπ and |E0〉 is |π〉. A quantum mechanical computation

shows that

Cπ(y0 − x0)
def
= FT 0

x
FT 0

y
〈0|Ψ(x)Ψ†(y)|0〉 (108)

=
∑

k

FT 0
x
FT 0

y
〈0|Ψ(x)|Ek〉

1

2Ek
〈Ek |Ψ†(y)|0〉

=
∑

k

|〈0|Ψ(0)|Ek〉|2
2Ek

eiEkx0e−iEky0

=
|〈0|Ψ(0)|π〉|2

2mπ
e−imπ(y0−x0) + · · ·

=
f2

πmπ

2
e−imπ(y0−x0) + · · · . (109)

Here FT 0
x

=
∑

x
is the Fourier transform in the spatial components of x at

zero momentum. The dots indicate exponential terms that oscillate faster than

the leading term. The last step follows from the definition of fπ, the pion decay

constant.
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Fig. 13. Global fit of partially quenched data from the MILC collaboration63 and chiral extrap-
olation of fπ for various input values of the propagating and dynamical quarks’ masses. Here mx

and my represents the bare u and d quark masses respectively.

After a Wick rotation

Cπ(y0 − x0) =
f2

πmπ

2
e−mπ(y0−x0) + · · · (110)

and the fast oscillating terms, represented by the dots, are replaced by fast decaying

exponentials. For y0 − x0 = t and considering periodic boundary conditions

Cπ(t) =
f2

πmπ

2
[e−mπ(t) + e−mπ(L−t)] + · · · . (111)

The lattice formulation of QCD provides the numerical technique to evaluate

the left-hand side of Eq. (109):

Cπ(t) = FT 0
x
FT 0

y

∫

[dφ][dA]Ψ†(x)Ψ(y)e−SE

' 1

N

∑

U

FT 0
x
FT 0

y
Re Tr(γ5Q−1(x, y)γ5Q−1(y, x))

=
1

N

∑

U

∑

x

∑

y

|Q−1(x, y)|2δ(t− |y0 − x0|) . (112)

In the last step we used H symmetry on the second propagator.
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State IG JPC Operator Ψ

scalar 1− 0++ ψ̄ψ′

1− 0++ ψ̄γ0ψ′

pseudoscalar 1− 0−+ ψ̄γ5ψ′

1− 0−+ ψ̄γ0γ5ψ′

vector 1+ 1−− ψ̄γµψ′

1+ 1−− ψ̄γµγ0ψ′

axial 1− 1++ ψ̄γµγ5ψ′

tensor 1+ 1+− ψ̄γµγjψ′

octet 1
2

1
2

−
(ψTiγ2γ0ψ′j)(γ5ψ′′k)εijk

1
2

1
2

−
(ψTiγ2γ0γ5ψ′j)(ψ′′k)εijk

decuplet 3
2

3
2

+
(ψTiγ2γ0γiψ′j)(ψ′′k)εijk

Fig. 14. Example of currents used on lattice and their relative quantum numbers. ψ, ψ′ and ψ′′

are different flavors. The superscripts i, j and k are gauge indices.

By computing Eq. (112) for different values of t and fitting the results with

Eq. (111), one can extract both mπ and fπ. Some numerical results64 for fπ com-

puted from Eq. (112) for different values of the quark masses are shown in Fig. 15.

The extrapolated fπ is compared with the experimental results.

In practice, because of dimensional transmutation, one always computes pure

numbers such as mπ in units of 1/a and one can eliminate such dependence on a

by computing ratios of masses or other dimensionless ratios.

Similarly one can compute masses and decay constants of other particles by

choosing the right operator. A list of operators for various interesting states is

listed in Fig. 14. For a deeper analysis on how to built this type of operators for

baryons can be found in Ref. 65.

Figure 15 shows the computation of the neutron mass for different fermion

formulations at different lattice spacing.66 As expected, within error, they all agree

with each other in the continuum limit.

5. Error Analysis

There are two types of errors in any LQCD computation. Statistical errors and

systematic errors. Statistical errors are under control today. The main source of

systematic error are discussed below, they are being addressed by recent computa-

tions, and will be removed in the near future.

• Discretization. The typical lattice spacing is today of the order of (2 GeV)−1.

This introduces discretization errors that are sometime difficult to quantify. One

effect, for example, is the breaking of continuous rotational symmetry. One way

to reduce discretization effects is by means of Symazik improved actions.
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1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6

m
N

r 1

(a/r1)2 for mPSr1 = 0.807

quenched comparison

imp glue + imp stagg (asqtad)
imp glue + Naik

imp glue + unimp stagg
unimp glue + unimp stagg

unimp glue + tad clover
imp glue + tad clover
unimp glue + Wilson

perfect action
C.L. all

Fig. 15. The plot shows the extrapolation to the continuum limit of the neutron mass computed
in LQCD using various types of fermions.63 Improved glue refers to an O(a2) improved gauge
action. Different formulations agree with each other within the error but clover and staggered
converge faster than Wilson as expected. mPS in the plot refers to the pion mass which is used
to set the unit scale r1.

• Quenching. This error is the most difficult to quantify and it is now being

eliminated thanks to new algorithms and cheaper computing power. A great deal

of effort has been put in this direction in the recent years. Recent computations

with dynamical quarks have been a success but the dynamical quark masses are

still larger than the physical u and d quark mass.

• Chirality. Both Wilson and staggered fermions break chiral symmetry and do not

allow computations at zero quark mass. Moreover, the more the chiral limit is

approached, the more expensive it is to invert the fermionic matrix Q. Alterna-

tive fermionic discretizations such as domain wall fermions and overlap fermions

promise restoration of the chiral symmetry in the continuum limit and provide a

better approximation of continuum physics.

• Matching. Most experimental quantities are usually expressed in the MS

scheme, while the lattice computations are performed in a different regulariza-

tion/renormalization scheme. The procedure to relate one to the other is called

matching and it mainly perturbative in nature. When lattice results are converted
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in the MS scheme using one-loop matching they become affected by matching

errors as big as 20%. The computation of matching beyond one-loop is a very chal-

lenging task. Some attempts to automate this process via a numerical approach

to lattice perturbation theory can be found in Refs. 67 and 68. It is important to

stress that the use of the MS scheme is a convention and this matching would

not be necessary if the lattice regularization were used everywhere.

In LQCD, errors due to continuum extrapolation, extrapolation to physical

masses (both for heavy quarks and light quarks) and finite lattice size are today

very much under control and below 2% for most quantities of phenomenological

interest.

Figures 16 and 17 show the effect of quenching on the light quark spectrum

and how the latest dynamical LQCD computations69,70 agree with experiment.

6. Conclusion

The lattice formulation provides a way to regularize, define and compute the Path

Integral in a Quantum Field Theory. This formulation and the associated numerical

techniques have been of crucial importance in deepening our knowledge of quantum

field theories in physical regimes where perturbation theory fails, as in the case of

QCD at strong coupling. For example, LQCD computations have played and are still

playing an important role in understanding the process of quark confinement,71,72

determining the phase structure of gauge theories,73 confronting QCD predictions

fπ

fK

3MΞ −MN

2MBs
−MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)

1.110.9

LQCD/Exp’t (nf = 3)

1.110.9

Fig. 16. Recent LQCD results from the MILC collaboration.68 The two images show ratios of
LQCD results over experimental results for various QCD quantities of phenomenological interest

without and with dynamical fermions, respectively. Dynamical fermions are implemented using
O(a2) improved staggered fermions.
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Fig. 17. Unquenched hadron masses and splittings compared with experimental values.69 The
Υ and cc̄ columns are differences from the ground state masses as computed by HPQCD and
Fermilab groups. The π, K and Υ(1P-1S) masses are used to fix the quark masses and the lattice
spacing.

with experiments,69 and extracting fundamental physical parameters such as quark

masses74,75 and CKM matrix elements76,77 from experimental results.

Three advantages of LQCD over most analytical techniques is that it is easier

to understand, the effect of its approximations can be controlled numerically, and

the precision of any computation can be reduced arbitrarily just by increasing the

dedicated computing time.

Today most LQCD computations are limited by available computing power.

In order to overcome this limitation many groups have been working on de-

signing dedicated machines for LQCD such as APEnext,78 QCDOC79 and the

Earth Simulator.80 Other groups have focused on the development of software and

algorithms optimized for commodity hardware such as PC clusters81 and building

infrastructures for the exchange of field configurations.82

Most of the algorithms and the examples discussed here and many more are

implemented in a free software library called FermiQCD.83–85 Despite its name,

FermiQCD is not LQCD specific but it is suitable for generic LQFT computations.

It has a modular design and an easy to use syntax very similar to the one we have

used in this paper (in fact, algorithms such as the MinRes and the BiCGStab map

line by line). Moreover, all of the FermiQCD algorithms are parallel and they can

run on distributed memory architectures such as PC clusters. FermiQCD has been

used for production grade computations at Fermilab and other institutions.

FermiQCD can be downloaded from www.fermiqcd.net.
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Appendix A. Useful Formulas in 4D Euclidean Space Time

A.1. Wick rotation

The Euclidean action is obtained from the Minkowskian one by performing a Wick

rotation. Under this rotation the basic vectors of the theory transform according

with the following table (E for Euclidean, M for Minkowski)

E M E M

x0 ix0 xi xi

∂0 −i∂0 ∂i ∂i

A4 −iA0 Ai Ai

F 0i −iF0i F ij Fij

γ0 γ0 γi −iγi

γ5 γ5

(A.1)

and the integration measure transforms as follows:

exp(−SE) = exp(iSM ) , (A.2)

where

SE =

∫

d4xELE [· · ·] = −i
∫

d4xMLM [· · ·] . (A.3)

The choice d4xE = id4xM can be made, hence LE [· · ·] = −LM [· · ·]
The Euclidean metric tensor is defined as

gµν
E = −δµν = diag(−1,−1,−1,−1) . (A.4)

A.2. Spin matrices

• Dirac matrices (Dirac representation)

γ0 =

(
1 0

0 −1

)

, γi =

(
0 −iσi

iσi 0

)

, γ5 =

(
0 1

1 0

)

. (A.5)

• Dirac matrices (Chiral representation)

γ0 =

(
0 1

1 0

)

, γi =

(
0 −iσi

iσi 0

)

, γ5 =

(
−1 0

0 1

)

. (A.6)
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All the Euclidean Dirac matrices are Hermitian. The following relations hold:

gµν =
1

2
{γµ, γν} = δµν , (A.7)

σµν =
i

2
[γµ, γν ] , (A.8)

γ5 = γ0γ1γ2γ3 (A.9)

and all the σµν are Hermitian.

• Projectors

L =
1 − γ5

2
, R =

1 + γ5

2
. (A.10)

• Traces

tr(γµγν) = 4δµν , (A.11)

tr(γµγνγρ) = 0 , (A.12)

tr(γµγνγργσ) = 4(δµνδρσ − δµρδνσ + δµσδρν) , (A.13)

tr(γ5γµγνγργσ) = 4εµνρσ
E , (A.14)

where ε0123E = −1.
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