
ELSEVIER
SUPPLEMENTS

Nuclear Physics B (Proc. Suppl.) 129&130 (2004) 832-834 www.elsevierphysics.com

www.fermiqcd.net
Massimo Di Pierroa*, Aida X. El-Khadrab, Steven Gottlieb” Andrea,s S. Kronfeldd, Paul B. Mackenzied,
Masataka Okamotod, Mehmet B. Oktayb and James N. Simoned (for the FermiQCD Collaboration)

a School of Computer Science, Telecommunications and Information Systems, DePaul University,
Chicago, IL GO604

b Department of Physics, University of Illinois, Urbana, IL 61801

’ Depa,rtment of Physics; Indiana University, Bloomington, IN 47405

d Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510

1. INTRODUCTION books.

FermiQCD[l] [2] is a C++ library for fast devel-
opment of parallel lattice QCD applications. The
expression FermiQCD Collaboration is used as a
collective name to indicate both the users of the
software and its contributors.

One of the main differences between FermiQCD
and libraries developed by other collaborations is
that it follows an object oriented design as op-
posed to a procedural design. FermiQCD should
not be identified exclusively with the implemen-
tation of the algorithms but, rather, with the
strict specifications that define its Application
Program Interface. One should think of Fer-
mi&CD as a language on its own (a superset of
the C++ language), designed to describe Lattice
QCD algorithms. The objects of the language
include complex numbers (mdp-complex), ma.tri-
ces (mdp-matrix) , lattices (mdp-lattice) , fields
(gauge-field, fermi-field, staggeredfield), prop-
agators (fermi-propagator) and actions. Algo-
rithms written in terms of these objects are au-
tomatically parallel.

Programs are portable in the sense that
they can, in principle, be compiled with any
ANSI C++ compiler. Hardware specific op-
timizations are coded in the library and hid-
den from the high level programmer.

The high level programmer does not have
to deal with parallelization issues since the
underlying objects deal with it. FermiQCD
communica.tions are based on MPI.

Programs are easier to debug because the
usage of FermiQCD objects and algorithms
does not require explicit use of pointers. All
memory management is done by the objects
themselves.

Some of the a.dvantages of our design approach
are the following:

l Programs written in FermiQCD are easy to
write, read and modify since the FermiQCD
syntax resembles the mathematical syntax
used in Quantum Field Theory articles and

*presented by M. Di Pierro

FermiQCD was originally designed with one
main goal in mind: easy of use. It is true
that in many cases this requires a compromise
with speed. For example, FermiQCD actions
and fields support arbitrary Su(n,) gauge group
and it is not practical to optimize the linear al-
gebra for a.ny n,. However it is convenient to
optimize some of the specific cases of interest
(such as n, = 3) while mainta,ining compatibil-
ity with the FermiQCD syntax. At present the
FermiQCD library includes multiple implemen-
tations of each action (Wilson, Clover, Kogut-
Susskind, Asqtad[3], Domain Wall, Fermilab[4])

0920-5632/$ - see front matter 0 2004 Elsevier B.V All rights reserved.
doi:lO. 1016/j.nuclphysbps.2003.12.304

A4. di Pierro et al. /Nuclear Physics B (Proc. Suppl.) 129&130 (2004) 832-834 833

and, for each a,ction, at least one implementa-
tion is optimized for SU(3). In particular, we
provide a FermiQCD port of the Clover SU(3)
action coded by M. L&her using SSE assembly
instructions for Pentium 4[5].

The following code decla.res two fermionic fields
(phi and psi) and one SV(nc) gauge field (U) on
a given lattice (lattice), reads psi and U from
disk and computes

where Q[U, K] = D[U] + m[n] is the Dirac matrix
and K is the typical lattice parameter that sets
the mass scale:

fermi-field phi (lattice, nc> ;
fermi-field psi (lattice, nc> ;
gauge-field U(lattice,nc);
coefficients light-quark;
psi. load(“f ermi-f ield.mdp”) ;
U. load(“gauge-f ield.mdp”) ;
light-quark[“kappa”l=O, 123;
if (nc==3) default-fermi-action=

FermiCloverActionSSE2::mul-Q;
mul-invQ(phi,psi,U,light_quark);

Note that when nc = 3 the above progra,m uses
the SSE optimized Wilson action. If nc # 3 a
different implementation of the Wilson action is
used. FermiQCD programs are transparent to the
choice of the action.

On a cluster of 2GHz Pentium 4 PCs connected
by Myrinet, one double precision SU(3) minimum
residue step with Clover action takes 4.8 micro
seconds per lattice site. The efficiency drops to
75 - 80% on 8 processors. For more benchmarks
we refer to the www . f ermiqcd. net web page.

FermiQCD programs are implicitly parallel.
Each lattice object determines an optimal com-
munication pattern for its sites assuming a
next-neighbor, a next-next-neighbor or a next3-
neighbor interaction in the action. The optimal
patterns are determined according to empirical
rules that minimize dependence on the network
latency and minimize communication load.

2. EXAMPLES

2.1. Computing the average plaquette
Given a hu-plane, the average plaquette, for

each gauge configuration, is defined as

(ppy) = $ReTr C, Up(x)Uv(x + G) (1)

[G(~)q& + qH (2)
here is the corresponding FermiQCD syntax:

f orallsites (x)
p=p+real(trace(U(x,mu)*U(x+mu,nu)*

hermitian(U(x,nu)*U(x+nu,mu)))) ;
p=p/lattice. size0 ;

In the above code f orallsites is a parallel loop,
U(x,mu) is 71, X n, color matrix.

2.2. Implementing the Dirac-Wilson ac-
tion

As another example, we consider here the fol-
lowing Wilson discretization of the Dirac action:

(Pa=Ai--K c, (~+-Y,)ao~~(~)~p(~+jl^) + (3)

(l-y,),pU,H(z-ii)~,p(z-~) (4)

which can be translated into the following Fer-
miQCD code:

phi=psi ;
f orallsites(x)

for(int mu=O; mu<4; mu++> <
for(int b=O; b<4; b++) {

psi-up(b)=U(x,mu)*psi(x+mu,b);
psi-dw(b)=hermitian(U(x-mu,mu))*

psi(x-mu,b);
3
phi=phi-kappa*((i+Gamma[mu]>*psi-up+

(l-Gamma [mu] > *psi-dw) ;
3

Note how “1” in this context is interpreted as a
diagonal unitary matrix. The sum on Q is implicit
since psi-up and psi-dw are spinxcolor matrices.

2.3. Computing the pion propagator
The pion propaga.tor is defined as

Cz(zo) = c (4z)-ir(O)) (5)
Zl ,XZ,ZQ

= ReTr C)Jf&3!4s,“,(4 (f9
Xl,~Z>X3 cu,p

834 M. di Pierro et al. /Nuclear Physics B (Proc. Suppl.) 129&130 (2004) 832-834

where S is a light quark propagator in the back-
ground gauge field U:

Here is the FermiQCD syntax for Eq. (6):

generate(S,U,light-quark);
f orallsites (x>

for(int a=O; a<4; a++>
for(int b=O; b<4; b++)

C2(x(O))+=real(trace(S(x,a,b)*
hermitian(S(x,b,a)))) ;

where S(x,a, b) is a colorxcolor matrix. The
function generate creates the propagator S by
calling the inverter (for example the minimum
residue or the sta.bilized bi-conjugate gradient)
Each of the inverters works on any of the provided
actions and also on user defined actions.

3. CONCLUSIONS

In our experience the cost of developing a.nd
debugging software is one of the major costs of
Lattice QCD computations. FermiQCD was de-
signed to standardize this software development
process and, therefore, reduce the cost for the
community.

FermiQCD comes in the form of a library (with
examples), rather than a collection of ready ma,de
programs, since we understand that different re-
search groups have different requirements. Some
ready made programs for specific computations
(such as generating gauge configurations, com-
puting meson propagators, etc.) are available as
examples, while others are available upon request
to the authors. We provide converters for the
most common data formats including UKQCD,
MILC, CANOPY and various binary formats.

The FermiQCD libraries can be used freely for
research purposes and we do not require that
users share their programs unless they wish to
do so (although we feel that this practice should
be encouraged).

On one hand, FermiQCD is a ma.ture project.
The present implementation has been tested in-
dependently by different groups and it has been

used to develop large scale lattice QCD compu-
tations. On the other hand, there is a lot of work
that needs to be done, including:

implementing dynamical fermions

developing a graphical interface

optimizing the gauge actions

porting the low level communications li-
braries (currently based on MPI) to other
protocols such as TCP/IP for Gigabit eth-
ernet and SciDAC API for the QCDOC.

incorporating grid-like features, including
the ability to rea.d and write data in the new
interna,tional data grid standard for gauge
configurations.

implementing new actions such as the
Iwasaki gauge action and Overlap fermions.

building a collection of ready-to-use pro-
grams and related documentation.

The development of FermiQCD has greatly
benefited from access to other codes such as
UKQCD (from which we borrowed the local ran-
dom number generator), MILC (for the staggered
fermion algorithms), CANOPY (for many design
features), M. Liischer’s (for the assembly macros)
and C. Michael’s (for all-to-all propagators); we
thank their authors for making them available to
us. We also wish to thank J. Flynn, A. Shams,
F. Mescia, L. Del Debbio and T. Ra,dor for their
through tests of the inverters and the Clover ac-
tion.

REFERENCES

1. M. Di Pierro, [hep-lat/0004007]
2. M. Di Pierro, Nucl. Phys. Proc. Suppl. 106

(2003) 1034 [hep-lat/0110116]
3. MILC collaboration (Kostas Orginos et

al.) Phys. Rev. D59 (1999) 014501 [hep-
lat/9805009]

4. M. Oktay et al. (in these proceedings)
5. M. Liischer, Nulc. Phys. Proc. Suppl. 106

(2002) 21 [hetp-lat/0110007]

