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1. INTRODUCTION books. 

FermiQCD[l] [2] is a C++ library for fast devel- 
opment of parallel lattice QCD applications. The 
expression FermiQCD Collaboration is used as a 
collective name to indicate both the users of the 
software and its contributors. 

One of the main differences between FermiQCD 
and libraries developed by other collaborations is 
that it follows an object oriented design as op- 
posed to a procedural design. FermiQCD should 
not be identified exclusively with the implemen- 
tation of the algorithms but, rather, with the 
strict specifications that define its Application 
Program Interface. One should think of Fer- 
mi&CD as a language on its own (a superset of 
the C++ language), designed to describe Lattice 
QCD algorithms. The objects of the language 
include complex numbers (mdp-complex), ma.tri- 
ces (mdp-matrix) , lattices (mdp-lattice) , fields 
(gauge-field, fermi-field, staggeredfield), prop- 
agators (fermi-propagator) and actions. Algo- 
rithms written in terms of these objects are au- 
tomatically parallel. 

Programs are portable in the sense that 
they can, in principle, be compiled with any 
ANSI C++ compiler. Hardware specific op- 
timizations are coded in the library and hid- 
den from the high level programmer. 

The high level programmer does not have 
to deal with parallelization issues since the 
underlying objects deal with it. FermiQCD 
communica.tions are based on MPI. 

Programs are easier to debug because the 
usage of FermiQCD objects and algorithms 
does not require explicit use of pointers. All 
memory management is done by the objects 
themselves. 

Some of the a.dvantages of our design approach 
are the following: 

l Programs written in FermiQCD are easy to 
write, read and modify since the FermiQCD 
syntax resembles the mathematical syntax 
used in Quantum Field Theory articles and 

*presented by M. Di Pierro 

FermiQCD was originally designed with one 
main goal in mind: easy of use. It is true 
that in many cases this requires a compromise 
with speed. For example, FermiQCD actions 
and fields support arbitrary Su(n,) gauge group 
and it is not practical to optimize the linear al- 
gebra for a.ny n,. However it is convenient to 
optimize some of the specific cases of interest 
(such as n, = 3) while mainta,ining compatibil- 
ity with the FermiQCD syntax. At present the 
FermiQCD library includes multiple implemen- 
tations of each action (Wilson, Clover, Kogut- 
Susskind, Asqtad[3], Domain Wall, Fermilab[4]) 
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and, for each a,ction, at least one implementa- 
tion is optimized for SU(3). In particular, we 
provide a FermiQCD port of the Clover SU(3) 
action coded by M. L&her using SSE assembly 
instructions for Pentium 4[5]. 

The following code decla.res two fermionic fields 
(phi and psi) and one SV(nc) gauge field (U) on 
a given lattice (lattice), reads psi and U from 
disk and computes 

where Q[U, K] = D[U] + m[n] is the Dirac matrix 
and K is the typical lattice parameter that sets 
the mass scale: 

fermi-field phi (lattice, nc> ; 
fermi-field psi (lattice, nc> ; 
gauge-field U(lattice,nc); 
coefficients light-quark; 
psi. load(“f ermi-f ield.mdp”) ; 
U. load(“gauge-f ield.mdp”) ; 
light-quark[“kappa”l=O, 123; 
if (nc==3) default-fermi-action= 

FermiCloverActionSSE2::mul-Q; 
mul-invQ(phi,psi,U,light_quark); 

Note that when nc = 3 the above progra,m uses 
the SSE optimized Wilson action. If nc # 3 a 
different implementation of the Wilson action is 
used. FermiQCD programs are transparent to the 
choice of the action. 

On a cluster of 2GHz Pentium 4 PCs connected 
by Myrinet, one double precision SU(3) minimum 
residue step with Clover action takes 4.8 micro 
seconds per lattice site. The efficiency drops to 
75 - 80% on 8 processors. For more benchmarks 
we refer to the www . f ermiqcd. net web page. 

FermiQCD programs are implicitly parallel. 
Each lattice object determines an optimal com- 
munication pattern for its sites assuming a 
next-neighbor, a next-next-neighbor or a next3- 
neighbor interaction in the action. The optimal 
patterns are determined according to empirical 
rules that minimize dependence on the network 
latency and minimize communication load. 

2. EXAMPLES 

2.1. Computing the average plaquette 
Given a hu-plane, the average plaquette, for 

each gauge configuration, is defined as 

(ppy) = $ReTr C, Up(x)Uv(x + G) (1) 

[G(~)q& + qH (2) 
here is the corresponding FermiQCD syntax: 

f orallsites (x) 
p=p+real(trace(U(x,mu)*U(x+mu,nu)* 

hermitian(U(x,nu)*U(x+nu,mu)))) ; 
p=p/lattice. size0 ; 

In the above code f orallsites is a parallel loop, 
U(x,mu) is 71, X n, color matrix. 

2.2. Implementing the Dirac-Wilson ac- 
tion 

As another example, we consider here the fol- 
lowing Wilson discretization of the Dirac action: 

(Pa=Ai--K c, (~+-Y,)ao~~(~)~p(~+jl^) + (3) 

(l-y,),pU,H(z-ii)~,p(z-~) (4) 

which can be translated into the following Fer- 
miQCD code: 

phi=psi ; 
f orallsites(x) 

for(int mu=O; mu<4; mu++> < 
for(int b=O; b<4; b++) { 

psi-up(b)=U(x,mu)*psi(x+mu,b); 
psi-dw(b)=hermitian(U(x-mu,mu))* 

psi(x-mu,b); 
3 
phi=phi-kappa*((i+Gamma[mu]>*psi-up+ 

(l-Gamma [mu] > *psi-dw) ; 
3 

Note how “1” in this context is interpreted as a 
diagonal unitary matrix. The sum on Q is implicit 
since psi-up and psi-dw are spinxcolor matrices. 

2.3. Computing the pion propagator 
The pion propaga.tor is defined as 

Cz(zo) = c (4z)-ir(O)) (5) 
Zl ,XZ,ZQ 

= ReTr C )Jf&3!4s,“,(4 (f9 
Xl,~Z>X3 cu,p 
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where S is a light quark propagator in the back- 
ground gauge field U: 

Here is the FermiQCD syntax for Eq. (6): 

generate(S,U,light-quark); 
f orallsites (x> 

for(int a=O; a<4; a++> 
for(int b=O; b<4; b++) 

C2(x(O))+=real(trace(S(x,a,b)* 
hermitian(S(x,b,a)))) ; 

where S(x,a, b) is a colorxcolor matrix. The 
function generate creates the propagator S by 
calling the inverter (for example the minimum 
residue or the sta.bilized bi-conjugate gradient) 
Each of the inverters works on any of the provided 
actions and also on user defined actions. 

3. CONCLUSIONS 

In our experience the cost of developing a.nd 
debugging software is one of the major costs of 
Lattice QCD computations. FermiQCD was de- 
signed to standardize this software development 
process and, therefore, reduce the cost for the 
community. 

FermiQCD comes in the form of a library (with 
examples), rather than a collection of ready ma,de 
programs, since we understand that different re- 
search groups have different requirements. Some 
ready made programs for specific computations 
(such as generating gauge configurations, com- 
puting meson propagators, etc.) are available as 
examples, while others are available upon request 
to the authors. We provide converters for the 
most common data formats including UKQCD, 
MILC, CANOPY and various binary formats. 

The FermiQCD libraries can be used freely for 
research purposes and we do not require that 
users share their programs unless they wish to 
do so (although we feel that this practice should 
be encouraged). 

On one hand, FermiQCD is a ma.ture project. 
The present implementation has been tested in- 
dependently by different groups and it has been 

used to develop large scale lattice QCD compu- 
tations. On the other hand, there is a lot of work 
that needs to be done, including: 

implementing dynamical fermions 

developing a graphical interface 

optimizing the gauge actions 

porting the low level communications li- 
braries (currently based on MPI) to other 
protocols such as TCP/IP for Gigabit eth- 
ernet and SciDAC API for the QCDOC. 

incorporating grid-like features, including 
the ability to rea.d and write data in the new 
interna,tional data grid standard for gauge 
configurations. 

implementing new actions such as the 
Iwasaki gauge action and Overlap fermions. 

building a collection of ready-to-use pro- 
grams and related documentation. 

The development of FermiQCD has greatly 
benefited from access to other codes such as 
UKQCD (from which we borrowed the local ran- 
dom number generator), MILC (for the staggered 
fermion algorithms), CANOPY (for many design 
features), M. Liischer’s (for the assembly macros) 
and C. Michael’s (for all-to-all propagators); we 
thank their authors for making them available to 
us. We also wish to thank J. Flynn, A. Shams, 
F. Mescia, L. Del Debbio and T. Ra,dor for their 
through tests of the inverters and the Clover ac- 
tion. 
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