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We use the dynamical gluon configurations provided by the MILC collaboration in a study of the charmonium 
spectrum and + leptonic width. We examine sea quark effects on mass splitting and on the leptonic decay matrix 
element for light masses as low as ms/5, while keeping the strange quark mass fixed and the lattice spacing nearly 
constant. 

1. INTRODUCTION 

Charmonium states below open flavor thresh- 
old are considered gold-plated quantities in Iat- 
tice &CD. They are almost stable mesons, which 
should be accurately calculable in lattice QCD 
once realistic sea-quark effects are included in the 
simulations. A high precision study of the char- 
monium system in unquenched lattice QCD is in- 
teresting for several reasons. First, it provides 
us with an important test of the lattice methods, 
because the methods used for charmonium calcu- 
lations are similar to those used for CKM deter- 
minations in the D meson system [1,2]. Second, it 
allows us to test our improved actions which are 
under development [3], since different splittings in 
the charmonium system are sensitive to different 
correction operators in the action. For example, 
the hyperfine splitting is very sensitive to -$cr.B$, 
while the xc fine structure is expected to sensi- 
tively depend on 4~. (D x E)$. Finally, together 
with 2-100~ perturbation theory, it yields precise 
determinations of a, and the charm quark mass. 

The 2 + 1 dynamical gauge configurations geQ- 
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erated by the MILC collaboration contain real- 
istic sea quark effects, since they reach the chi- 
ral region (ml 2 m,/5) - a necessary feature to 
control chiral extrapolation errors. A first test 
of lattice QCD calculations which use the MILC 
configurations was presented in Ref. [9]. For the 
first time agreement (at the few % level) with ex- 
periment was achieved for a variety of different 
physical systems, involving b, c, and light quarks. 
This comparison includes our results for the lP- 
1s splitting in charmonium which are also pre- 
sented here. 

The work presented here continues our char- 
monium study [4,5]. Our companion study of the 
D, and D meson spectra and weak decays is pre- 
sented in Ref. [1,2]. 

2. METHODS 

We are using the MILC collaboration “Asqtad” 
gluon ensembles [6,7]. The Asqtad action has 
leading (3(aza2) gluon uncertainties and leading 
0(a,a2) uncertainties for the improved staggered 
sea quarks. 

The gluon ensembles have one flavor approx- 
imating the strange quark and two equal-mass 
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lighter flavors. A matched set of gluon ensem- 
bles is available having light masses in the range 
m, to m,/5 and nearly constant lattice spacing 
(see Table 1). 

Our charm quarks are 0(a)-improved Wilson 
fermions in the Fermilab interpretation of heavy 
quarks. The coefficient of the clover term has 
the tadpole-improved tree-level value. The bare 
charm quark mass is tuned by demanding that 
the D, meson kinetic mass equal the experimental 
value. 

3. CHARMONIUM SPECTRUM 

Fig. 1 shows the overall picture of the char- 
monium spectrum after sea quark extrapolations. 
The zero of energy is taken to be the spin average 
of the IS’ masses. The lattice spacing is deter- 
mined using the h,( 1P) splitting as input. This 
lattice spacing is consistent, at the few percent 
level, with other ways of setting the lattice spac- 
ing [9]. We compare the charmonium P-IS’ and 
bottomonium 2S-1s lattice spacings in Table 1. 

Table 1 
The bare light sea quark mass and coupling p 
for the MILC three-flavor gluon ensembles. The 
strange quark has mass ams = 0.05. Lattice spac- 
ings are given in GeV. The 2S-1S results are from 
Reference [8]. 

aml beta cfgs a;,‘(lP-1s) aq1(2S-1s) 
,007 6.76 403 1.55(3) ~ 
0.01 6.76 593 1.56(2) 1.59(2) 
0.02 6.79 460 1.59(3) 1.61(2) 
0.03 6.81 549 1.57(3) 1.60(3) 

We extrapolate linearly in the light sea quark 
mass. The mass dependence is mild: linear terms 
are typically of the same order of magnitude as 
their statistical error. The mass dependence for 
the hyperfine splitting, shown in Fig. 2, illustrates 
a typical extrapolation. Smaller statistical errors 
and more sea quark masses would be needed to 
better resolve terms in the chiral expansions. 

Charmonium 

Figure 1. The charmonium spectrum in 2 + 1 fla- 
vor lattice QCD after extrapolation to the phys- 
ical sea quark masses. The lattice spacing is 
a M l/8 fm. No lattice result for the xcz(lP) 
splitting is shown since that state was not com- 
puted in this study. The dotted indicates the D D 
threshold energy. 

The 2S splittings shown in Fig. 1 have la.rge 
errors. Statistical uncertainties for these excited 
states are 20 - 30 times as large as uncertainties 
in the ground states with the same Jpc. Ground 
state and radially excited state energies are ob- 
tained from a single fit using Bayesian techniques. 
We continue to investigate ways to improve the 
signal for excited states. 

3.1. Hyperfine splitting 
The hyperfine splitting in charmonium is a 

gold-plated quantity, which must agree with ex- 
periment once all known systematic errors are 
corrected. 

As shown in Fig. 2 we obta.in a 1S hyperfine 
splitting of 97 +Z 2 MeV, or in ratio to experiment, 
theory/expt= 0.82 f 0.02. A comparison to our 
previous quenched result (obtained at similar lat- 
tice spacings), theory/expt= 0.6, shows that sea 
quarks have an appreciable effect on this quan- 
tity. The remaining discrepancy is likely due to 
having only a (tadpole improved) tree-level esti- 
mate for the coefficient of the u . B term in our 
action. A one-loop calculation of this coefficient 
is in progress [lo]. 
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Figure 2. The charmonium 1s hyperfine split- 
ting as a function of the mass of the two light sea 
quarks. The solid and dotted lines show the linear 
extrapolation with 68% confidence bounds. The 
extrapolated value is denoted by the burst sym- 
bol. The experimental value lies above the lattice 
determination. 

4. $(lS) LEPTONIC WIDTH 

We determine the hadronic matrix element, 
I$, E ( 0 ] Vj ] $ ) for the leptonic width from 
the overlap coefficient of the two-point function 
of the $J propagator annihilated by the local vec- 
tor current. At present our calculation does not 
include the 0(a) correction for the vector current. 

For the spatial current renormalization,‘we use 
the formula 2% = pv,Zv,, and the nonperturba- 
tive result for Zv, from Ref. [2]. Since the one- 
loop correction to pvi is currently unknown, we 
have pv, = 1 in our calculation of V+. Hence, our 
results for this quantity are very prehminary. 

The experimental measurement of the Ieptonic 
width implies for the matrix element VFpt = 
0.504zt 0.018 GeV3/‘. 

Fig. 3 shows our preliminary results for V$; 
after sea quark extrapolation we find VGhy = 
0.586 f 0.015 GeV312. The statistics only un- 
certainty is dominantly from the lattice spacing 
determination. We find theory/expt= 1.16*0.04, 
combining errors in quadrature. 
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Figure 3. The annihilation matrix element for the 
decay $(lS) + e+e- as a function of the mass 
of the two light sea quarks. The extrapolated 
matrix element lies above the value derived from 
the experimental leptonic decay width. 
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