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Abstract

We present a set of programming tools (classes and functions writ@ftirand based on Message Passing Interface) for
fast development of generic parallel (and non-parallel) lattice simulations. They are collectivelyMafed. 2.

These programming tools include classes and algorithms for matrices, random number generators, distributed lattices (with
arbitrary topology), fields and parallel iterations. No previous knowledge of MPI is required in order to use them.

Some applications in electromagnetism, electronics, condensed matter and lattice QCD are pres2@@dd Elsevier
Science B.V. All rights reserved.
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No. of bytes in distributed software, including test data, etc.: A program that computes total impedance in a net of re-

2500222 sistors @pplication2.C). An Ising model simulation
(appl i cation3. C). A parallel implementations of the Vegas

Distribution format: tar gzip file multidimensional integration algorithnMDP_PVegas. h, not de-

scribed here). A complete Lattice QCD packager(nm QCD, not

Nature of the physical problem described here)

Any problem that can be described in terms of interacting fields dis-

cretized on a lattice of some arbitrary shape and topology Web site: http:/www.phoenixcollective.org/mdp/mdp.him

Parallel applications provided together with the library as examples
A program that solves electrostatic problempfl i cati onl. C).

LONG WRITE-UP

1. Introduction

One of the biggest discoveries of modern physics is that long distance forces are mediated by fields and these
fields are subject to local interactions. Local differential equations, in some field variables, seem to describe any
aspect of fundamental physics (from particle physics to gravitation, from thermodynamics to condensed matter).

Often the equations describing complex interacting systems cannot be solved exactly and require a numerical
approach, i.e. discretize on a lattice the space on which the equations are defined. The derivative terms of a local
equation, once discretized, give origin to quasi-local interaction terms on the lattice.

The good thing of having to deal with quasi-local equations is that one can partition the problem by partitioning
the lattice (the space) on which the problem is defined, and only a minimal set of communications is required to
pass information about the field variables at the boundary of these partitions (because first and second derivatives
of the differential equations in the continuum correspond to nearest neighbor interaction terms on the lattice).

Parallel computers and clusters are the natural hardware for implementing the numerical algorithms that can
solve this kind of problems.

MDP is a set ofC++ tools for fast development of any kind of parallel numerical computations that involve the
lattice discretization of a finite portion of space (and/or time) over a number of parallel processors (supporting
Message Passing Interface). It considerably reduce that development costs since one can concentrate on the
algorithm instead of focusing on communications.

A number of tricks and optimizations are implemented that mak&m® 1.2 an efficient package for
developing, among others, fast and robust Lattice QCD applications.

1.1. Content

The main characteristics ®DP 1. 2 are:

e It includesMat ri x, a class to manipulate matrices of compl&oifpl ex) numbers. The assignment
operator and the copy constructor have been overloaded to optimize the speed and the memory usage. In fact a
Mat r i x object contains a dynamically allocated pointer to the location of memory where the matrix elements
are stored. The matrix elements are automatically copied only when it is inevitable, otherwise their memory
address is copied. In particular, the temporsit r i x object returned by a function stores its elements in
the same location of memory used by the function that will take that object as argument. This class is used to
implement an interface to the fields.

1For examplelDP 1. 2 has been used here at Fermilab to develop, in a relatively short time, a parallel software for Lattice QCD simulations
(see Section 5.5).
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e All the calls to MPI are done through a wrapper objegij , which takes care of generating communication
tags and computing the length of the objects to be sent/received by the parallel processes.
e The most important classesMDP 1. 2 are

generic_lattice
site
generic_field

They enable the user to define lattices of any size, shape and topology and associate any kind of structure
to the sites. Other properties of these classes are: automatic communications between the parallel processes
(when necessary), parallel I/O for the field variables and functions to move on the lattice.

e For each user defined lattice, one random generator per site is automatically created and is a member variable
of generi c_I atti ce. This guarantees that any simulation will give the same results whether it runs on a
single PC or in parallel, independently of the way the lattice is partitioned. The random generator itself can
be seen as a field and it can be saved and restored and any point.

e Each lattice (and each field defined on that lattice) can be partitioned arbitrarily among the different processes
(or automatically if the user does not bother to do it) and the constructpeioéri c_| atti ce, for each
process, takes care of allocating the memory for storing the neighbor sites that have to be passed by a neighbor
process. The code has been optimized in order to minimize the need for communications and the low level
optimization tricks are completely hidden to the high level programmer.

e The same code can run on single process on one PC or multiprocess on a cluster of PCs (or on a supercomputer
supporting MPI), without any modification. The results are independent from the number of protesses.

As an example of what one can do wtDP 1. 2 we present a parallel program that creates a field of%

matrices on a & 4 x 4 lattice (distributed on 4 processors) and sets each matrix (for each site) equal to the inverse
of the exponential of a random SU(5) matrix (just to make things a little complicated!). Than it averages each
matrix with its 6 nearest neighbors.

00: // Program exanple0l.C

01; #define PARALLEL

02: #define Nproc 4

03: #include "MDP_Li b2. h"

04: #include "MDP_MPI. h"

05:

06: int main(int argc, char **argv) {
07: npi . open_wor nhol es(argc, argv);

08: i nt ndi ne3;

09: i nt mybox[]={4, 4, 4};

10: generic_lattice myl attice(ndim nybox);
11: Matrix field F(nylattice,5,5);

12: site x(nylattice);

13: forallsites(x)

14: F(x) =i nv(exp(mnyl attice.randomx).SU5)));

15: F. update();
16: forallsites(x) {

17: F(x)=1.0/7. 0% ( F(x) +F(x+0) +F( x- 0) +F( x+1) +F( x- 1) +F(x+2) +F(x-2));
18: printf("F(x) for x=(%,%)\n", x(0), x(1));
19: print(F(x));

2 Apart for rounding errors that usually are compiler and hardware dependent.



20:
21:
22:
23:
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b
npi . cl ose_wor mhol es();

return O;

i

Note that each line has a meaning and none of them is superfluous:

Line 1 tells that the job will run in parallel.

Line 2 tells that it will run on 4 processes (this statement is optional since the number of processes can be
determined at runtime).

Line 3 and 4 includes the libraries ¥DP 1. 2.

Line 7 establishes the communications among the processes.

Line 8 sets a variable containing the dimensions of the lattice.

Line 9 fills an array containing the size of the lattice.

Line 10 defines the latticeryl at ti ce.

Line 11 defines a field of Xx 5 matricesk onmnyl attice (Matri x_fi el d is built-in field based on
generic_field).

Line 12 defines &i t e variablex onnyl atti ce.

e Lines 13, 14 initialize each field variable( x) with the inverse of the exponential of a random SU(5)

(generated using the local random generator ofigite

Line 15 performs all the communication to update boundary sites, i.e. sites that are shared by different
processes. They are determined automatically and optimally when the lattice is declared.

Lines 16, 17 average( x) with its 6 next neighbor sites.

Lines 18, 19 print out the results.

Line 21 closes all the communications.

The source code &WDP 1. 2 is contained in the files

MDP_Li b2. h,
VDP_MPI . h,
MDP_ANSI . h,
MDP_Measur e. h,
MDP_Fit. h,
MDP_PVegas. h,
VDP_Pr onpt . h,
MDP_utils. h,

plus some examples and applications. Only the classes defined in the first two files will be discussed here.
A reader interested only in parallelization issues can jump directly to Section 4, and go back to Sections 2 and 3
later.

2. Nonparallel tools

Four basic classes are declared in theNIP_Li b2. h:3

myr eal . Itis equivalenttd | oat unless the user defines the global constisE DOUBLE_PRECI SI ON.

In this casaryr eal stands fodoubl e.

Conpl ex. Declared aonpl ex<nyr eal >. The imaginary unit is implemented as a global constant
| =Conpl ex(0, 1).

3 The classes defined in the fi¥P_Li b2. Chave extensively been used in some analysis programs written by the Southampton Theory
Group for Lattice QCD applications.
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e Dynani cArray<obj ect, n>.Itis a container fon-dimensional arrays afbj ect s (for examples arrays
of Mat ri x). Dynam cArr ays can be resized any time, moreover they can be passed to (and returned by)
functions.

e Matri x. An object belonging to this class is effectively a matrix@fnpl ex numbers and it may have
arbitrary dimensions.

e Random gener at or . This class contains the random number generator and member functions to generate
randomf | oat numbers with uniform distribution, Gaussian distribution or any user defined distribution.
It can also generate random Si)(matrices. DifferenRandom gener at or objects can be declared and
initialized with different seeds.

e JackBoot . Itis a class to store sets of data to be used for computing the average of any user defined function
acting on the data. Itincludes member functions for computing Jackknife and Bootstrap errors on this average.

Moreover the following constants are declared

#defi ne and &&

#define or [

#define Pi 3.14159265359
#defi ne | Conpl ex(0, 1)
#defi ne PRECI SI ON le-16

#defi ne CHECK ALL
#define TRUE 1
#define FALSE O

If the definition of CHECK_ALL is removed the code will be faster but some checks will be skipped resulting a
lesser safe code.

2.1. OnDynani cArray and Mat ri x

The main idea on which these two classes have been built is the solution of the problem of returning objects
containing pointers to dynamically allocated memory [1].
Consider the following code involving matrices:

Matrix A B(10, 10);
A=B;
A=B* A

In the first assignment one wants each elememg taf be copied in the corresponding elemenfpfvhile the
second assignment is fasteBindA are passed to the local variables of tiper at or * by reference (i.e. without
copying all the elements). Moreover one wants the local variable created bpéreat or * to occupy the same
memory location as the variable that is returned (this avoids copying and wasting space). To implement this idea
eachMat ri x object contains &LAG and a pointer to dynamically allocated memory (where the numbers are
stored). The copy constructor and ther at or = have been overloaded in such a way to take care of the status
of theFLAGand eventually to copy the pointer to the memory, instead of copying the memory containing the real
matrix.

A physical location of memory may be pointed by differ&bt r i X objects, but this never generates confusion
if a few safety rules, stated later, are followed. An automatic system of garbage collecting deallocates the unused
memory when there are no objects alive pointing to it.

In this way, in the first assignment of the example 1800 byte$ are copied, while in the second assignment
only 11 bytes are copied three times (when passiagdB to theoper at or * () and when returning the result)

4 The number 11 is the size in bytes of/at r i x object. In is independent from the size of the memory occupied by the “real” matrix.
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to be compared with the 800 bytes of the matrix. The pointeh &f swapped only when the multiplication is
terminated without generating confusion between the input and the output of the functioRL ABdakes care
of everything and the procedure works also in any recursive expression. For big matrices this is, in principle,
faster than it would be possible in FORTRAN or C. (In FORTRAN, for example, it would be necessary to create
a temporary array where to store the result of the multiplication and copy itAnttm practice this is not true
because the clad#at ri x uses dynamic allocation and modern compilers are not able to optimize its algorithms
as well as they can optimize algorithms using normal arrays.

We do not suggest to use the clasBysiam cArray andMat ri x to implement those parts of the user’s
algorithms that are critical for speed. Despite this, they can be used to implement an efficient and practical interface
to field variables (as shown in Section 4.3.4).

2.2. Safety rules

The safety rules fobynani cAr r ay andMat r i x objects are:

e Always, before returning aabject, call pr epar e( object);

e Never explicitly call the copy constructor.

e Do not call the assignment operator of the argument of a function within the function itself.

2.3. Using Dynani cArray

DynamicArrays are declared using templates. For example the command
Dynani cArray<fl oat, 4> nyarray(2, 3,6, 5);

declares a % 3 x 6 x 5 array off | oat callednyar r ay. The first argument of the template specifies the type
of object (i.ef | oat ) and the second argument is the number of dimensions of the arra4)(i&n array of this
kind can be resized at any time. For example,

myarray. di nensi on(4, 3, 2, 2);

transformsryar r ay in a new 4x 3 x 2 x 2 array off | oat . A Dynani cAr r ay can have up to 10 dimensions.
The array elements can be accessed by referenceaygerggat or () in the natural way

nyarray(i,j,k, 1)

wherei , j, k, | are integers. The total number of dimensions (in this example 4) is contained in the member
variable

nyarray. ndi m

Two useful member functions are

myarray. si ze()

that returns the total number of elements of the array ¢agy) and
myarray. si ze(n)

that returns the size of the of the dimensiownf the array (a$ ong). The argumenh must be an integer in the
range [Qndi m—1].

DynamicArrays can be passed to function and can be returned by functions but, before a DynamicArray is
returned the functiorpr epar e must be called. Here is an example of a program that returns a DynamicArray.
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/1l Program exanpl e02.C
#i ncl ude "MDP_Li b2. h"

Dynami cArray<fl oat, 2> f(float x) {
Dynam cArray<fl oat, 2> a(2, 2);
a(0, 0) =x;
prepare(a); [/ | MPORTANT !!
return a;

H

int main() {
float x=f(Pi)(0,0);
printf("%\n", x);
return O;

H

It prints3. 141593. Note thaff () returns a 2< 2 Mat ri x. The following is a program that contains a function
that takes a DynamicArray as argument

/1 Program exanpl e03.C
#i ncl ude "MDP_Li b2. h"

Dynami cArray<fl oat, 2> f(float x) {
Dynani cArray<fl oat, 2> a(2, 2);
a(0, 0) =x;
prepare(a);
return a;

s

voi d g(Dynam cArray<float, 2> a) {
printf("%\n", a(0,0));
b

int main() {
Dynami cArray<fl oat, 2> a;
a=f (Pi);
a(a);
return O;

s

The output of this program is agag 1415. Note that wherf () is assigned t@, the latter is automatically
resized.

Bare in mind that even if the functiag( ) does not take its arguments by reference the olfjgnam cAr r ay
contains a pointer to the memory where the real data are stored, theref@awiftitwas passed by reference. This
does not generate confusion providing one follows the three safety rules.

24. UsingMat ri x

A Mat ri x object, sayM is very much likeDynani cArray<Conpl ex, 2>. A Matri x can be declared
either by specifying its size or not
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Matrix Mr,c); [l r rows tines ¢ columms
Matrix M /1l a general matrix

Even if the size of a matrix has been declared it can be changed anywhere with the command
M di nension(r,c); [// r rows tinmes ¢ colums
Any Mat r i x is automatically resized, if necessary, when a value is assigned to it. The following lines

Matrix M5,7), A(8,8);
M=A;
printf("%,%\n", Mrowrmax(), M col max());

prints 8, 8. The member functionsownax() andcol max() return, respectively, the number of rows and
columns of avat ri x.
The elementi, j) of a matrixMcan be accessed with the natural syntax

Mi,j)
wherei , j are integers. Moreover the class contains functions to perform standard operations among matrices:

+, -, *, |, +=, -=, *= [=, inv, det, exp, sin, cos, log,

transpose, hermitiam minor, identity,....

As an example a program to compute

-1
2 3
oo(z 5] 2
looks like this:

/1l Program exanple04.C
#i ncl ude "MDP_Li b2. h"
int main() {
Matrix a(2,2);
a(0,0)=2; a(0,1)=3;
a(1,0)=4; a(l,1)=5*1;
print(inv(exp(a)));

return O;
b
It is straightforward to add new functions copying the following prototype
Matrix f(const Matrix a, const Matrix b, ...) {
Matrix M
/1 body,
prepare(M;
return M
b

We repeat again the three safety rules one should always remember: one shopideqear e() before
returning aMvat r i x; one should not return Bht ri x by reference; one should not initializeMat r i x using
the copy constructor nor call the assignment operatoiftar i x argument.



106 M. Di Pierro/ Computer Physics Communications 141 (2001) 98-148

Here is one more example of how to use the chsisr i x:

/1 Program exanpl e05.C
#i ncl ude "MDP_Li b2. h"
Matrix cube(Matrix X) {
Matri x Y;
Y=X* X* X;
prepare(Y);
return Y,
1
int main() {
Matri x A B;
A=Random SU( 3) ;
B=cube( A) *exp(A) +i nv(A);
print(A);
print(B);
return O;

H

This code prints on the screen a random SU(3) matrand B = A%e* + A. Some example statements are listed

in Table 1. Note that the command
A=mul _left (B, C;

is equivalent but faster than
A=C*transpose(B);

because it does not involve allocating memory for the transposBd of
As one more example of a powerful application Bynani cArray here is a program that defines a
multidimensionaDynani cAr r ay of Mat ri x objects and pass it to a function.

Table 1

Examples of typical instructions acting dat r i x objects.A, B, C, Dare assumed to
be declared asht ri x; r, c asi nt ; a, b may be any kind of number

Example C++ with MDP_Li b2.h
A€ Mrxc(C) A. di nensi on(r, c)

Aij AP )

A=B+C-D A=B+C-D

A = gk ck)) A=B*C

AU = pUk b A=nul _| eft (B, ©)
A=aB+C A=a*B+C
A=al+B-bl A=a+B-b

A=BTc™1

A= BTexpic)

A =cogB)+isin(B) xC
a=reaktr(B~1c))

a =det(B)det B~

A=t ranspose(B)*i nv(C)
A=herm tian(B)*exp(l*C
A=cos(B) +l *sin(B)*C
a=real (trace(inv(B)*Q))

a=det (B) *det (i nv(B))
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/1l Program exanpl e06.C
#i ncl ude "MDP_Li b2. h"

Dynami cArray<Matrix, 3> initialize() {
Dynani cArray<wmatri x, 3> d(20, 20, 20);
int i,j,k;
for(i=0; i<20; i++)

for(j=0; j<20; j++)
for(k=0; k<20; k++) {
d(i,j,k).dinmension(2,2);
d(i,j,k)(0,0)=k;
d(i,j,k)(0,1)=i;
d(i,j,k)(1,0)=j;
d(i,j,k)(1,1)=k;
¥
prepare(d);
return(d);

}

Dynani cArray<Matri x, 3> f(Dynami cArray<watrix, 3> c) {
Dynami cArray<Matri x, 3> d(c. si ze(0),c.size(l),c.size(2));
int i,j,k;
for(i=0; i<c.size(0); i++)

for(j=0; j<c.size(l); j++)
for(k=0; k<c.size(2); k++)
d(i,j,k)=sin(c(i,j,k));
prepare(d);
return(d);

};

int main() {
Dynani cArray<Matri x, 3> a, b;
asinitialize();
b=f(a);

int i=1, j=2, k=3;
print(a(i,j,k));
print(b(i,j,k));
return O;

a,b, c,dare 3D 20x 20 x 20 arrays of 2x 2 matrices. The program prints

[[ 3.000+0.000i 1.000+0.000i ]

[ 2.000+0.000i 3.000+0.000i ]]
[[ 0.022+0.000i -0.691+0.000i ]
[ -1.383+0.000i 0.022+0.000i ]]

107
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Note that the instruction
d(i,j,k)=sin(c(i,j, k));
computes thei n() oftheMatrixc(i,j, k).

2.5. cl assRandom gener at or

The random generator implemented Random gener at or is the Marsaglia random number generator
described in Refs. [4,5] (the same generator is also used by the UKQCD collaboration in many large scale
numerical simulations). It presents the nice feature that it can be initialized with a single long random number and
its correlation time is relatively large compared with the standard random genesatdf ) of C++. To define a
random generator, sagyr and, and use the integsreed as seed one should simply pagsd to the constructor:

Random gener at or nyrand(seed);

For simple non-parallel applications one only needs one random generator. For this redRandom® gene-
r at or object calledRandomis automatically created and initialized with seed O.

Random gener at or contains some member variables for the seeds and four member functions:

e pl ai n(); Itreturns arandoml! oat number in the intervald, 1) with uniform distribution.

e gaussi an(); It returns a randonf | oat numberx generated with a Gaussian probabili®(x) =
exp(—x2/2).

e distribution(float (*P)(float, void*), void* a); Itreturnsarandom numberin the
interval [0, 1) generated with a Gaussian probabilR¢x, a) , wherea is any set of parameters pointed
by voi d *a (the second argument passeddiost ri but i on). The distribution functionP should be
normalized so that & min P(x) <1 and maxP (x) = 1.

e Random generator:: SU(int n); it returns a randoniat ri x in the group SUg) or U (1) if the
argumentis: = 1.

Here is a simple program that creates one random number generator, generates a set of 1000 random Gaussian

numbers and counts how many of them are in the rgng® (n + 1)/2) forn=0,...,9

/1 Program exanpl e07.C
#i ncl ude "MDP_Li b2. h"
int main() {
Random gener at or random
int i,n,bin[10];
float x;
for(n=0; n<10; n++) bin[n]=0;
for(i=0; i<1000; i++) {
x=r andom gaussi an() ;
for(n=0; n<l10; n++)
i f((x>=0.5*n) && (x<0.5*(n+1))) bin[n]++;
i
for(n=0; n<10; n++)
printf("bin[%] = %\n", n, bin[n]);
return O;

s

Here is a program that computes the average of the sum of two sets of 1000 numbedd), wherea is
generated with probabilit (a) = exp(—(a — a)?/(20)) andb with probability O (b) = sin(b).
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/1l Program exanpl e08.C
#i ncl ude "MDP_Li b2. h"

float float x, void *a) {
return sin(Pi*x);

s

int main() {
Random gener at or random
int i,n,bin[10], N=100;
float a,b, average=0, signa=0.3, a_bar=1;
for(i=0; i<N i++) {
a=(si gma*random gaussi an() +a_bar) ;
b=random di stribution(Q;
aver age+=a+b;
printf("average=%\n", average/(i+1));
1
return O;

b

For largeN the output asymptotically approachesbar +0. 5=1.5.
The algorithm for SU(2) is based on map betwer(8) and SU(2), realized by

{a,a} —> expiaa - 0) = codw) +ia - o sin(w), 2)

where ¢1, 02, 03) is a vector of Pauli matrices, € 52 is a uniform vector on the sphere ande [0, ) is a
uniform rotation angle around that direction.
A random SUY) is generated using the well-known Cabibbo—Marinari iteration [2] of the algorithm for SU(2).

2.6. cl assJackBoot

Suppose one has sets of m different measured | oat quantitiesx[i][j] (wherei =0,...,n and
j =0,...,m) and one wants to compute the average eyef a functionF( x[ i ] ) . For example,

float x[n][m={....}
float F(float *x) {

return x[1]/x[0];
b
float result=0;
for(i=0; i<n; i++)
result+=F(x[i])/n;

s

Than one may ask: what is the error on the result? In general there are two algorithms to estimate this error:
Jackknife and Bootstrap [3]. They are both implemented as member functions of the class JackBoot. They work
for any arbitrary functior.

A JackBoot object, let's call it b, is a sort of container for the data. After it has been filled it can be asked to
return the mean df() and its errors. Here is an example of how it works:

JackBoot jb(n,m;
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jb.f=F;
for(i=0; i<n; i++)
for(j=0; j<m j++)
JbCi, j)=x[i][jl];
printf("Result
printf("Jackknife error
printf("Bootstrap error

%\n", jb.mean());
%u\n", jb.j_err());
%\n", jb.b_err(100));

Note that

e The constructor of the claskackBoot takes two arguments: the first is the number of configuration; the

second is the number of the quantities measured on each configuration.

e j b. f is the pointer to the function used in the analysis.

e j b. nean() returnsthe mean.

e jb.j _err() returnsthe Jackknife error.

e jb. b_err () returnsthe Bootstrap error. It takes as argument the number of Bootstrap samples. The default

value is 200.

It is possible to declare arrays ddckBoot objects, but it is rarely necessary. It is simpler to declare different
functions and repeat the analysis using the sdawk Boot object assigning the pointdackBoot : : f to each
of the functions at the time.

As another example consider the following program. It generates an array of 100 SU(6) matrices. For each
matrix it computes trace and determinant, and returns the average of the ratio between the real part of the trace and
the real part of the determinant (with its Jackknife and Bootstrap errors), and the average of the product of the real
part of the trace and the real part of the determinant (with its Jackknife and Bootstrap errors)

/1 Program exanpl e09.C
#i ncl ude "MDP_Li b2. h"
#define n 100
float f1(float *x, float *a) { return x[0]/x[1]; };
float f2(float *x, float *a) { return x[0]*x[1]; };
int main() {
Matri x A
JackBoot jb(n,2);
int i;
for(i=0; i<n; i++) {
A=Random SU( 6) ;
jb(i,0)=real (det(inv(A)));
jb(i,1)=real (det(A));
b
jb.f=f1;
printf("Result x[0]/x[1]
printf("Jackknife error
printf("Bootstrap error
jb.f=f2;
printf("Result x[0]*x[1]
printf("Jackknife error
printf("Bootstrap error
return O;

%\n", jb.mean());
%\n", jb.j_err());
%\n", jb.b_err(100));

%\n", jb.mean());
%\n", jb.j_err());
%\n", jb.b_err(100));
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Note that any user defined function usedlackBoot (f 1 andf 2 in the example) has to take two arguments:
an array off | oat (containing a set of measurements done on a single configuration) and a poirtertor his
is useful to pass some extra data to the function. The extra data must be pa3sedBoot by assigning the
member variable

voi d* JackBoot : : handl e;

toit.
JackBoot has one more member functwrai n(i nt i), where the call

/* define JackBoot jb(...) */
/* assign a value to the integer i */
jb.plain(i)

is completely equivalent to

/* define JackBoot jb(...) */
/* assign a value to the integer i */
float f(float *x, void *a) {

return x[i];

b
jb. f=f

Usingpl ai n saves one from defining trivial functions for JackBoot.

3. Parallel tools

With a parallel program we mean a job constituted by many programs running in parallel (eventually on different
processors) to achieve a global goal. Each of the running programs, part of the same job, is called a process.
Different processes can communicate to each other by exchanging messages (in MPI) or by accessing each-other
memory (in computers with shared memory). The latter case is hardware dependent and will not be taken in
consideration. With the term “partitioning” we will refer to the way different variables (in particular the field
variables defined on a lattice) are distributed among the different processes.

The most common and portable parallel protocol is Message Passing Interface (MPI). It is implemented on a
number of different platforms, for example Unix, Linux, Solaris, Windows NT and Cray T3D/E.

When writing a program using MPI, one essentially writes one program for each processor (Multiple Instructions
Multiple Data) and MPI provides the functions for sending/receiving information among them.

We present here an example of how MPI works, even if a detailed knowledge of MPI is not required to understand
the rest of this paper.

Suppose one wants to compuy¥ex 7) + (4 x 8) in parallel using two processes. A typical MPI program to do it
is the following:

/1 Program exanplel0.C

#i ncl ude "stdio. h"

#i ncl ude "npi . h"

int main(int argc, char **argv) {
int ME, Nproc;
MPI _St atus st at us;
MPl _Init(&argc, &argv);
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MPI _Comm r ank( MPI _COVM WORLD, &ME);
MPI _Comm si ze( MPI _COVWM WORLD, &Nproc);

i f(ME==1) {
int b;
b=4*8;
MPl _Send(&b, 1, MPl _I NT, 0, 45, MPI _COVM WORLD) ;
b
i f (ME==0) {
int a,b;
a=5*7;
MPI _Recv(&b, 1, MPl I NT, 1, 45, MPl _COVMM WORLD, &st at us) ;
printf("%\n", a+b);
¥

MPI _Finalize();
b

ME is a variable that contains the unique identification number of each running procelSpramd is the total
number of processes running the same code. Since different processes have different Witsepfexecute
different parts of the progranm f ( ME==n) ...).

In the examplg5 * 7) is computed by process 0 while, at the same tighe€8) is computed by process 1. Then
process 1 send®Pl _Send) its partial result to process 0, which receive( _Recv) and prints out the sum.

MPI instructions can be classified in

e initialization functions (likeMPl _I ni t, MPI _Comm r ank, MPl _Cormm si ze),

e one to one communications (likdPl _Send, MPl _Recv),

e collective communication (where for example one variable can be broadcasted by one process to all the

others).

It is not a purpose of this paper to explain how MPI works therefore we refer to [6].

3.1. npi ontop of MPI

MPI is not Object Oriented and it is so general that MPI function calls usually require many arguments. This

makes it very easy to do mistakes when programming with MPI.
For this reason the claspi _wor mhol e_cl ass, a wrapper to MPI, has been created. It has only one global
representative object calleghi . We believe thatrpi is easier to use than MPI in the context of lattice simulation.

npi is not intended as a substitute or an extensioWRb, in fact only a subset of the features of MPI are
implemented impi and occasionally one may need explMRl calls. Its main purpose is to build an intermediate
programming level betwedvPl andgeneri c_| atti ce/generi c_fi el d,which constitute the very essence
of MDP 1. 2. There are some advantages of having this intermediate level, for example:

e It allows one to compile the code without linking wittfl . In this caserpi substitutes some dummy
functions to thevPl calls. This allows one to compile and run any parallel program on a single processor
computer even ifVPI is not installed, and it is also important for testing and debugging the code.

e In case one wants to rukDP 1. 2 on a parallel machine that does not suppdP but does support
a different protocol, one does not have to rewrite everything but only minor modifications to the class
nmpi _wor nhol e_cl ass will be necessary.

5 Needless to say that in such a simple program the parallelization is completely useless because the message passing takes more time than
the computation of the whole expression!
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3.2. npi and wormholes

From now one we will use here the word “wormhole”, in its intuitive sense, to represent the virtual connections
between the different processes. One can think of each process to have one wormhole connecting it with each of
the other processes. Each wormhole has a number, the number of the process connected to the other end. Process X
can send something to process Y just putting something into its wormhole n.Y. Process Y has to get that something
from its wormhole n.X.npi is the global object that allows the user to access these wormholes (put/get stuff

to/from them). A schematic representation of a 3 processes job is shown in Fig. 1.
Usingnpi , instead of MPI, prograraxanpl e10. Cbecomes:

/1 Program exanplell.C

#def i ne PARALLEL
#defi ne Nproc 2

#i ncl ude "MDP_Li b2. h"
#i ncl ude "MDP_MPI . h"

int main(int argc,

char **argv) {

npi . open_wor mhol es(argc, argv) ;

i f (ME==

1 {

int b;
b=4*8;

npi

Fig. 1. Example of a 3 processes jobs. ME and Nproc are the global variables that characterize the different processes running (eventually) on
different processors. The term wormhole refers to the virtual connection between each couple of processes.

. put (b, 0);

(3 processes JOB:)

PROCESSOR 0

process 0

if(ME==0) {

put(A,1);
get(B,2);
IR

ME=0
Nproc=3

do something;

wormhole 1 |<+———

wormbhole 2

PROCESSOR 1

PROCESSOR 2

wormbhole 0

if(ME==2) {
get(C,1);
put(B,0);

do something;

b

process 2

ME=1 process 1
Nproc=3
if(ME==1) {
get(A0);
wormbhole 0 put(C,2);
do something
N
wormhole 2
C
wormhole 1
ME=2
Nproc=3
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1
i f ==0) {
int a,b;
a=5*7;
npi . get(b, 1);
printf("%\n" , atb);
1

npi . cl ose_wor mhol es();

H

The most important things to notice are:

(1) A constant (without any value assigneBARALLEL, is defined on top. It tells the compiler to use the MPI
functions. When it is omitted some dummy functions are substituted to the MPI calls and communications
are skipped. This is useful for testing the behavior of a particular process in a multiprocess job without
actually going parallel.

(2) Npr oc is the total number of processes. If it is not defined by the IN@rpc it is defined automatically
(as a variable) wheNWDP_MPI . his included and its value is determined at runtime.

(3) Two librariesMDP_Li b2. h and MDP_MPI . h are included. The standard headers (stdio.h, math.h,
complex.h, iostream.h) are included BpP_Li b2. h.

(4) MEis a global macro meaningpi . my_i d, i.e. the identification number of the running process. Its value
is assigned by the call topi . open_wor nhol es when running withPARALLEL . Otherwise is has to be
specified by the user after that call.

(5) All of the initialization functions have been replaced by a single one:
voi d nmpi _wormhol e_cl ass: : open_wor mhol es(i nt & char**);

It is comgulsory even if the program does not run in parallel. It takes as input the same arguments of
mai n() .

(6) MPI _Send and MPI _Recv have been replaced bypi . put andnpi . get respectively. They check
automatically the size and type of their arguments.

(7) Atthe end of the program one hasttbose_wor mhol es. Actually if one forgets about this the destructor
of npi does take care of it.

The programmer is forced to use the narmips oc andME for the total number of processes and the process

identification number, respectively. They are keywordsMoP 1. 2.

3.2.1. get () andput ()
The functions put/get have the following syntax

tenpl ate <cl ass T> npi _wornhol e_cl ass: : put (T& int);
tenpl ate <cl ass T> npi _wormnhol e_cl ass: : put (T&, i nt, npi _request &) ;
tenpl ate <class T> npi _wornhol e_cl ass::get(T&, int)

The first argument (passed by reference) is the object to besa@n} 6r where to store the received orgef ).
The second argument is the destinatipat() or the sourcedet ). Forget aboutpi _r equest forthe moment,
it is optional.

All the variables related with message passing are membengof In this way variables that are not explicitly
necessary remain hidden inside it (for example the communicator and the communication tag).

6 This is due to the fact that when running in parallel (usingth@nmpi command) a script submits the same program to the different
processors with different command parameters, which are passed as arguments(ty . This is how a process knows its own identification
number:ME.
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The functiongput andget that replaced/Pl _Send andMPl _Recv are Object Oriented in the sense that
they can be used to send any kind of objédthe size and the tag of the communication are automatically computed
and do not have to be specified by the programmer. For example with the same s@ataglaex number can
be put/get instead of an integer. The only price paid for this is that a process, X, cannot send more that one object
to another process, Y, until the first object has been received. This is not such a price because in the kind of
computations we are interested in, we want to minimize the number of put/get and we want to pack as much data
as possible in each single communication, instead of making many small ones.

To avoid confusion, if the third argument pfit () is not specified this function will not return until the send
process has been completed (synchronous seStmetimes one wants thpit () command to return even if
the send is not completed, so that the process is free to do more computations, and eventually check at a later stage
if the previougput () has completed its task (asynchronous send). One typical case is when the object to be send
was dynamically allocated and it cannot be deallocated until the communication is concluded. The right way to
implement this send is writing a code like the following:

[* mystruct is any built in variable
or user defined structure */

mystruct *nyobj =new nystruct;

npi _request request;

put (*myobj , desti nation, request);

/[* do sonething else */

npi . wai t (request);

del ete nyobj;

Thewai t () member function ofipi stops the process until theait () command has terminated its task. Its
only argument is the object belonging to the clapé _r equest that was passed to the correspondng () .
The functionwai t () can also take a pointer to an array of requests and wait for all of them. The general definition
of this function is

voi d nmpi _wornmhol e_cl ass: :wait(npi_request&);
voi d nmpi _wormhol e_cl ass: :wait(npi_request*, int);

the second argument is the length of the array.
It is also possible to put/get arrays of objects by using the overloaded functions

tenpl ate <class T> npi _wornhol e_cl ass:: put (*T,|ong,int)
tenpl ate <class T> npi _wornhol e_cl ass:: put(*T,long,int,npi_request&)
tenpl ate <class T> npi _wornhol e_cl ass::get(*T,|ong,int)

where the first argument is a pointer to the first element of the array, the second is the length, the third is the
destination/source.

3.2.2. Put/get matrices

We have said that with the put/get commands it is not possible to pass objects that contain a pointer to
dynamically allocated memory and this is the case fébari x object. This does not mean that one cannot
put/get avat ri x. The correct way to sendMat ri x is

7 Assuming it does not contain a pointer do dynamically allocated memory.

8 Actually in npi . put an synchronous send is internally implemented usiRy_| send + MPl Wi t . This is becaus&Pl _Send is
ambiguous in some cases: the same program can have different behavior depending on the size of the objects that are passed. Our implementation
avoids any ambiguity.
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Matrix A;
[* do sonething with A */
npi . put (A address(), A. si ze(), destination);

The correct way to receiveMat ri x is

Matri x B;
/* dimension B as A */
npi . get (B. address(), B. si ze(), desti nati on);

It is extremely important to stress that when one puts/gets a matrix one only sends/receives its elements.
Therefore (in the last exampl® must have the same dimensionsfolt the momenget is called, otherwise
one gets wrong results.

3.2.3. Global communications
As an example of global communication we will consider the following code

/1 Program exanplel2.C
#defi ne PARALLEL
#defi ne Nproc 2
#i ncl ude "MDP_Li b2. h"
#i ncl ude "MDP_MPI . h"
int main(int argc, char **argv) {
npi . open_wor mhol es(argc, argv) ;
int a;
i f(ME==1) {
a=4*8;
npi . add( a) ;
1
i f(ME==0) {
a=5*7,
npi . add( a) ;
printf("%\n",a);
b
npi . cl ose_wor nhol es();
i
The member function:
voi d nmpi _wormhol e_cl ass: : add(fl oat &) ;

sums the first argument passed by all the processes. In this way each process knows the result of the sum operation.
To sum an array of float the corresponding sum for arrays of float is implemented as:

voi d nmpi _wormhol e_cl ass: : add(fl oat*, | ong);

(the second argument is the length of the array). The same furadidralso works fordoubl e, | ong, i nt,
Conpl ex andMat ri x andar r ays of these types. To addonpl ex numbers:

Conpl ex x;
npi . add( x) ;
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To addvat r i x objects

Matrix A;
nmpi . add( A) ;

Some more member functionsgpi for collective communications are:

e barrier () which sets a barrier and all processes stop at that point until all the processes reach the same
point.

e abort () which forces all the processes to abort.

e tenpl at e<cl ass T> broadcast (T a, int p) which broadcast the objeet (belonging to an
arbitrary clasq) of proces® to all other processes.

e tenpl ate<class T> broadcast(T *a, long n, int p) which broadcast the array of ob-
jectsT of proces® to all other processen.here is the number of elements of the array.

Here is an example of how to use these collective communications

/1l Program exanplel3.C
#defi ne PARALLEL
#defi ne Nproc 2
#i ncl ude "MDP_Li b2. h"
#i ncl ude "NMDP_MPI . h"
int main(int argc, char **argv) {
npi . open_wor mhol es(argc, argv) ;
int i,j;
for(i=0; i<5; i++) {
i f(ME==0) j =i
el se j =0;
i f(i9%®==0) npi.barrier();
npi . broadcast (j, 0);
printf("l amprocess %, i=%, j=%\n", Mg i,j);
b
npi . cl ose_wor mhol es();

H
This programs prints

am process

am process 0, i=1, j=1
am process 0, i=2, j=2
am process 0, i=3, j=
am process j
am process 1, i=0, j=0

am process
am process
am process
am process

PRPPPPOOOOO
1
1
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4. Introducing lattices and fields
4.1. cl ass generic_lattice

By a lattice we mean a generic set of points and a set of functions to move from one point to and¥dg. In
1. 2 alattice is implemented as any subset of a regular n-dimensional grid with a given (arbitrary) topology.
A lattice of such a kind is implemented as an object belonging to the gleassri c_| at ti ce using the

command:

generic_lattice mylattice(ndi mnybox, mypartitioning,
nyt opol ogy, seed, next _next);

or the command

generic_lattice nylattice(ndi mndir, nybox, mypartitioning,
nyt opol ogy, seed, next _next);

where:

myl at ti ce is a user defined variable that will contain the actual lattice structure.

ndi mis the dimension of the basic regular grid.

ndi r is the number of directions. It can be omitted and, by default, it is assumed to be eqdalrto

mybox is a user defineddi mensional array of nt that contains the size of the basic regular grid.
mypartitioni ng is a user defined function that for each site of the basic grid returns the number of
the process that stores it (or it returNOAHERE if the point has to be excluded from the lattice). If
mypartitioni ng is omitted all sites of the original grid (specified by mybox) will be part of the final
lattice, and they will be equally distributed between the processes according with the value of coordinate 0 of
each point?

e nmyt opol ogy is a user defined function that for each site of the final (remaining) grid, and for each dimension
in the nydi mensional space, returns the coordinates of the neighbor sites in the up and down direction. If
myt opol ogy is omitted the lattice will, by default, have the topology of i mensional torus, i.e. the
same of the basic grid plus periodic boundary conditions.

e seed is anintegerthatis used to construct a site dependent seed to initialize the random generators associated
to each lattice sites. If omitted it is assumed to be 0.

e next _next is an integer that may have only three values (1, 2 or 3). It essentially fixes the thickness of the
boundary between different processes. If omitted the default value is 1. It's use will not be discussed further.

For the moment we will restrict ourselves to the study of lattices with the basic (torus) topology, postponing the

rules concerning the specifications forparti ti oni ng andnyt opol ogy.

Here is a short program to create a 2B I8ttice (but no field yet associated to it) running in parallel on 4

processes.

/1l Program exanplel4.C

#defi ne PARALLEL

#defi ne Nproc 4

#i ncl ude "MDP_Li b2. h"

#i ncl ude "NMDP_MPI . h"

int main(int argc, char **argv) {
npi . open_wor mhol es(argc, argv) ;

9 For example, consider a lattice of size 8 in the 0 direction distributed on 4 processes. Process 0 will contain sites coordinate 0 equal to 0
and 1. Process 1 will contain sites coordinate 0 equal to 2 and 3. An so on.
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int mybox[]={8, 8};
generic_lattice nylattice(2, nybox);
npi . cl ose_wor nhol es() ;

s

When it runs (sincélpr oc is set to 4) the lattice will be automatically subdivided into 4 sublattices off 2i28 .
myl att i ce contains information about the sites and how they are distributed among the different processes.
Moreover the different processes automatically communicate to each other this information so that each of them
knows which local sites will have to be passed to the neighbor processes. All the communications to establish
the topology are done only once and the information are inherited by all the fields defimgd anht i ce. The
program produces the following output

PROCESS 0 STARTI NG
PROCESS 2 STARTI NG
PROCESS 1 STARTI NG
PROCESS 3 STARTI NG

Starting [ Matrix Distributed Processing ] .
This programis using the packages: NMDP_Li b2 and MDP_MPI
Created by Massinmo Di Pierro (mdp@NAL. GOV) version 17-11-1999

oing parallel ... YES

Initializing a generic_lattice...
Comuni cating. . .

Initializing random per site...
Done. Let’s begin to work!
PROCESS 1 ENDI NG AFTER 0. 010 sec.
PROCESS 2 ENDI NG AFTER 0. 008 sec.
PROCESS 3 ENDI NG AFTER 0. 011 sec.

Fractional time spent in comunications by processor 0 is 0.03
Fractional time spent in comunications by processor 1 is 0.04
Fractional time spent in comunications by processor 2 is 0.02
Fractional time spent in comunications by processor 3 is 0.03

Endi ng this program
Any runtime error below this point neans ness with npi and/or
deal | ocat on of nenory.

PROCESS 0 ENDI NG AFTER 0. 012 sec.

Note that the output automatically includes the execution time (using the wall clock) and the fractional time
spent in communication by each processor (0.03 means 3%). The latter is computed by measuring the total time
spent inside the communication functiopdat e() .

Two other member functions gfeneric_| atti ceare

Il ong generic_lattice::global_volume();
I ong generic_lattice::local _volume();
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The first return the size of the total lattice volume (i.e. the total number of sites), and the second returns the size of
the portion of volume stored by the calling process.
The member function

Il ong generic_lattice::size();

returns the total volume of the box containing the lattice and
| ong generic_lattice::size(int nmu);

returns the size, in direction, of the box containing the lattice.

42. class site

To access a site one can defingid e variable using the syntax
site x(nylattice);

This tells the compiler that is a variable that will contain the coordinate of a site and a reference to the lattice
myl att i ce on which the point is defined.

Let's look at a modification of the preceding code that create a lattice and, for each, gitents out the
identification number of the process that stores it:

/1 Program exanplel5.C

#def i ne PARALLEL

#define Nproc 5

#i ncl ude "MDP_Li b2. h"

#i ncl ude "NMDP_MPI . h"

int main(int argc, char **argv) {
npi . open_wor mhol es(argc, argv) ;
i nt mybox[]={10, 10};
generic_lattice nylattice(2, nybox);
site x(nylattice);
forallsites(x)

printf("Site=(%,%) is stored by %\n", x(0), x(1), M);

npi . cl ose_wor nhol es() ;

i

Note that
x(m)

returns the coordinateu of x.
This simple program allows one to print a map of the lattice. The output of this code depends on the number of
processors on which it is runniny. The loop command

forallsites(x) /* do sonmething with x */

spans first all the even sites and then all the odd sites.

10The buffers of the different processors are copied to the standard output at a random time partially scrambling the output of the different
processes. For this reason it is in general a good rule to print only from privEes®.
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It is possible to set the value ofsa t e variablex to a particular site of given coordinatg8(7), for example)
using the command

X.set(3,7);

but one must be careful and execute this statement only on the process which containg3h@)site eventually,
in a process that contains a neighbor of this site. In this case, in fact, the process will also contains a copy of the
original site therefore it will be able to access the location. By default each process will store its own sites plus
a copy of next-neighbor sites in each direction and a copy of next-next neighbor sites (moving in two different
directions)!! They will be referred to as boundary sites. Boundary sites are different for different processes.

It is possible to check if a site is a local site in the following way:

X.set(3,7)
if(x.is_in()) /* then do something */

The member functions_i n() returnsTRUE if the site is local. A better way to code it would be

i f(on_whi ch_process(3,7)==M) {
x.set(3,7);
/* do sonething */

}

Other member functions fi t e are

e i s_in_boundary() returnsTRUE if a site is in the boundary of that process.

e i s_here() returnsTRUEisthe sitei s_in() oris_in_boundary().

e is_equal (int,int,int...) returnsTRUE if the site is equal to the site specified by the coordinates
that are arguments afs_equal () (x0,x1,x2,...). Accessing a site that !i s_here() crashes the
program.

To move from one site to another is quite simple:

x=x+mu; // moves x up in direction mu (integer) of one step
x=x-mu; // moves x down in direction nmu (integer) of one step

Note thatmu is an integer and in general
X+NmM#£X#X—nu 3

even whenu is zero.
Here is a test program to explore the topology:

/1l Program exanplel6.C

#def i ne PARALLEL

#defi ne Nproc 2

#i ncl ude "MDP_Li b2. h"

#i ncl ude "NMDP_MPI . h"

int main(int argc, char **argv) {
npi . open_wor nhol es(argc, argv);
int nybox[]={10, 10};

11 This is required, for example, by the clover term in QCD.
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generic_lattice nylattice(2, nybox);
site x(mylattice);
i nt mu=0;
i f(ME==0) {
x.set (0, 0);
do {
printf("x=(%,%)\n", x(0), x(1));
if(x.is_in_boundary()) error("l found the boundary");
X=X+u;
} whil e(TRUE);
b
npi . cl ose_wor nhol es() ;

s

This program stops after 5 iterationsNpr oc==2, after 4 if Npr oc==3, after 3 if Npr oc==4, after 2 if
Npr oc==5 and so on. It will never stop on a single process jdpr(oc==1) because of periodic boundary
conditions. Since all sites with the samg0) , by default, are stored in the same process, if one moves in direction
nmu=1 the job will never stop despite the number of processes.

4.3. cl ass generic_field

A generic_fi el disthe simplest field one can define on a gigemeric_l atti ce.
Suppose, for example, one wants to associate a given strucitger uct , to each site ofryl at t i ce (in the
example a structure that contains jugtlaoat ) and initialize the field variable to zero:

/1 Program exanplel7.C
#defi ne PARALLEL
#defi ne Nproc 2
#i ncl ude "MDP_Li b2. h"
#i ncl ude "NMDP_MPI . h"
struct nystruct {
float value; /* or any other structure */
1
int main(int argc, char **argv) {
npi . open_wor mhol es(argc, argv) ;
int nybox[]={10, 10};
generic_lattice myl attice(2, mybox);
generic_field<nystruct> nyfield(nylattice);
site x(mylattice);
forallsites(x)
nyfiel d(x).val ue=0;
nyfi el d. update();
npi . cl ose_wor mhol es();

b
The command

generic_field<nystruct> nyfield(nylattice);
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definesnyf i el d, a field ofmyst r uct on the sites ofryl atti ce. The commandryfi el d( x) returns by
reference the structure associated to thexsite
The function

void generic_lattice::update(int,int,int)

is the most important of all. For the moment we will restrict to that case when it is called with no arguments. Its task
is to perform all the communications necessary in order for each process to get an updated copy of the boundary
sites stored by a neighbor process.

After the loop all sites that are locdl@r al | si t es) are initialized, but sites that are in boundary (since they
are copies of sites initialized on a different process) still contain “random” numbers. One way to initialize also the
sites in the boundary and avoid some time consuming communications is replacing the lines

forallsites(x)
myfiel d(x). val ue=0;
nyl attice. update();

with
foral |l sitesandcopi es(x) nyfiel d(x).val ue=0;

(Note that the commanidor al | si t esandcopi es only works for a local expression that does not call the
local random generator.)
It is also possible to loop on all the sites of a given parity, for example, EVEN (or ODD), in a slow way

i nt parity=EVEN;
forallsites(x)
if(x.parity()=parity)
/* then do sonething */

or in a fast way

i nt parity=EVEN;
forallsitesofparity(x,parity)
/* do sonething */

The second expression is faster because sites with the same parity are stored contiguously in memory.

4.3.1. Local random generator

Once ageneri c_| atti ce is declared one random generator per site is automatically created and initialized
with a function of the site coordinates. The random generator (and its member functionskaffsitgl atti ce
can be accessed (by reference) with the command

Random generator& generic_lattice::randonm(site)

Programexanpl el7. Ccan be modified so thatyf i el d is initialized, for example, with a gaussian random
number:

/1 Program exanplel8.C
#def i ne PARALLEL

#defi ne Nproc 2

#i ncl ude "MDP_Li b2. h"
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#i ncl ude "NMDP_MPI . h"
struct nystruct {
float value; /* or any other structure */
i
int main(int argc, char **argv) {
npi . open_wor mhol es(argc, argv) ;
i nt mybox[]={10, 10};
generic_lattice nmyl attice(2, mybox);
generic_field<nystruct> nyfield(nylattice);
site x(nylattice);
forallsites(x)
nyfield(x).val ue=nyl attice. random x).gaussi an();
nyfi el d. update();
npi . cl ose_wor nhol es() ;

s

4.3.2. Accessing a lattice froma field

It is always possible to accesgianeri c_| atti ce fromits field using atti ce(), a member function of
generi c_fi el dthatreturns by reference tigeneri c_| at ti ce on which the field is defined.

For example, in the preceding program one could substitute

nyfiel d(x).value=nyl attice.randon(x).gaussian();
with
myfield(x).value=nyfield.lattice().random x).gaussian();

and get the same result. This is useful because one can avoid paggingrai c_| att i ce object to a function
ofageneric_field.

4.3.3. Moreon updat e()
In some cases it may be useful to have a field that containg st r uct variables at each site.
A field of this type can be defined with tyhe command

generic_field<nystruct> nyfield(nylattice,n);

Consider, for example, the simple case of a tensor ﬁ'émx), wherei, j €{0,...,5},u € {0,...,3}. Itcan be
defined with

generic_field<Conpl ex[4][5][5]> T(nylattice);
and its elements can be accessed with the natural expression:
TO)[mul [i11]]

wheremu, i, j are integers.
Alternatively the tensof;/ can be defined with the command

generic_fiel d<Conpl ex[5][5]> T(nyl attice, 4);

and its elements can be accessed with the expression:
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TOx, mu) [i]1[j]

Sometimes the second choice is better for the following reason: In many algorithms one often needs to update
all the boundary site variables having a given a parity and a giverOne wants to do the update in one single
communications. Thapdat e() function allows one to do exactly this:

int parity=EVEN, int nu=3;
T. updat e(parity, nu);

4.3.4. operator()
Some care is required when declaringener i c_f i el d. The structure associated to the sites cannot contain
a pointer to dynamically allocated memory, therefore it cannot contiht a i x (or aDynani cAr r ay) object.
This is not a limitation since the structure associated to the sites can be a multidimensional array and one can always
map it into aMvat ri x by creating a new field, inheritingener i c_f i el d and redesigningper at or () .
In this subsection we explain how to ulkt r i x to build and interface to the field variables.
Let’s go back to the example of a tensor fie‘l,ﬂ (x). One can define it as

class nytensor: public generic_lattice<Conplex[5][5]> {};
mytensor T(nylattice, 4);

Instead of accessing its elementLCaspl ex numbers one may want to access the two-dimensional array as a
Mat r i x object. This is done by overloading tbger at or () of the class generic_field:

Matrix nmyfield::operator() (site x, int mu) {
return Matrix(address(x, m),5,5);

s

whereaddr ess() is a member function afjeneri c_| at ti ce thatreturns the location of memory where the
field variables af x, mu) are stored. After this definitions one can simply access the field using the expression:

T(x, nmu)

that now returns &bt ri x.

Nownyt ensor T looks like afield of 5< 5 matrices and its elements can be used as discussed in Section 2. For
example, one can initialize the tensor using random SU(5) matrices generated independently by the local random
generators associated to each site

foral |l sites(x)
for(nmu=0; nu<4; nu++)
T(x,mu)=T.lattice().random x).SU'5);

or print a particular element

x.set(3,5);
if(x.is_in()) print(T(x,2));

4.3.5. Afew derived fields
Following the directives of the last subsections four more basic fields are implemehieR id.. 2.
e Matri x_field:afieldofMatri x;
e NMatri x_fi el d:afield ofn Matri x;
e Vector _fi el d:afield of vectors (a vector is seen alstt r i X with one single column);
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e NVect or _fi el d: afield ofn vectors;
To explain their usage we present here a few lines of code that define a field dfrBatricesA, a field of
4-vectorsy, and a field of 3-vectors;; then for each site compute

v(x) = A(@)u(x). 4)

This can be implemented as

Matrix field A(nylattice, 3,4);
Vector field u(mylattice, 4);
Vector field v(mylattice, 3);

/* assign values to the fields */
forallsites(x) v(x)=A(x)*u(x);

and its generalization to
vi (x) = A; (x)u; (x) ©)
fori intherange [ON — 1]

int N=10; // user defined variable

Nvatrix _field A(nylattice, N, 3,4);

NVector _field u(nylattice, N, 4);

NVector _field v(nylattice, N, 3);

/* assign values to the fields */

forallsites(x) for(i=0; i<N, i++) v(x,i)=A(X,i)*u(x,i);

4.4, Input/output

The clasgyeneri c_fi el d contains two I/O member functions:

void generic_lattice::save(char[],int,int);
void generic_lattice::load(char[],int,int);

They take three arguments

e The fi | enane of the file to/from which to save/load the data

e The identification number of the master process that is will physically perform to the 1/O

e The size (in sites) of the buffer used by the master process to communicate with the other processes.

The last two arguments are optional and by default the master process is process 0 and the buffer size is 1024
sites. The identification number of the master process has to correspond to the process running on the processor
that is physically connected with the I/O device where theffilé enamne is. The size of the buffer will not affect
the result of the 1/0 operation but may affect the speed (which should increase with the size of the buffer). If the
size is too big there may be an “out of memory” problem (that usually results in obscure error messages when
compiling with MPI). Note that the I/O functions save/load have to be called by all processes (not just the master
one). In fact all processes which contain sites of the lattice are involved in the 1/0O by exchanging informations with
the master.

As an example of I/O we consider the case afaave() operation. Each of the processes arranges the local
field variables to be saved into packets and sends the packets to the process that performs the I/O (we assume it is
procesq)). Process arranges its site into packets ordered according with the global parameterization and sends
one packet at the time to proceBsin this way proces® only receives one packet at the time for each of the
processes and already finds the sites stored in the correct order so that it does not need to perform a seek. Process
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0 saves the sites according to the global parameterization (which is independent from the lattice partitioning over
the parallel processes). Its only task is to sweep all the sites and, for each of them, pick the corresponding field
variables from the packet sent by the process that stored it.

We believe this is the most efficient way to implement a parallel I/O for field variables. As a particular case,
assuming proceskshas enough memory, one could set the size of the buffer equal to the maximum number of sites
stored by a process. In this case the parallel I/O would be done performing only one communication per process.

As an example of efficiency: a field as large as 100 MB can be read and distributed over 8 500 MHz Pentiumlli
PCs in parallel (connected with Ethernet) in a few of seconds.

The save/load function are inherited by every field basedenrer i c_f i el d. For example:

[* define nylattice */

class nyfield: public generic_field<Complex[7][3]> {};
myfield F(nylattice);

/* do sonething */

F.save("test.dat");

F.load("test.dat");

If a field contains member variables other than the structure at the sites, these member variables are ignored by
save/load. The only variables that are saved together with the field are:
e the number of dimensions,
the size of the box containing the lattice,
the total number of sites belonging to the lattice,
the size in bytes of the structure at each lattice site,
a code to detect the endianess of the computer that saved the data,
the time and date when the file was created.
We also provide a small programnspect . C, that can open a file and extract this information.
It is always possible to add any other information to the bottom of the file (in binary or ASCII format) without
compromising its integrity.

4.5. Theinternal representation of a lattice

A lattice is a collection of sites and, for sake of simplicity, from now on we will refer to the lattice defined by

int ndi mF2;
i nt mybox[]={6, 6};
int nmypartitioning(int x[], int ndim int nx[]) {
i f(x[0]<3) return O;
if(x[1]<4) return 1;
return 2;
¥
generic_lattice mylattice(ndi mnybox, mypartitioning);

This lattice is represented in Fig. 2 and partitioned as in Fig. 5.
To speed up the communication proc®8¥ 1. 2 uses different parametrizations for labelling the sites:
e the global coordinates (as shown in Fig. 2),
e aglobal index (as shown in Fig. 3),
e alocalindex (as shown in Fig. 8 from the point of view of process 0),
and it provides functions to convert one parameterization into another.
The global parameterization is quite natural. For example: the pdiht={ 3, 2} has a global index given
by x[ 1] *nybox[ 0] +x[ 0] ; The two global parametrizations have a one to one correspondence. The local
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Fig. 2. Example of a & 6 grid. The points are labelled by their coordinates.
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12 13 14 15 16 17
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30 31 32 33 34 35
O O (@] O O o

Fig. 3. Example of a & 6 grid. The points are labelled by their global index.

parameterization is more complicated and it represents the order in which each process stores the sites in the
memory.

When the lattice is defined the constructor of the ctgsser i c_| att i ce spans all the sites using the global
coordinates (Fig. 2) and it assigns them the global index (Fig. 3) and a parity (Fig. 4). Then each process checks
which sites are local sites (Fig. 5). After the topology is assigned to the lattice (Fig. 6), each process identifies which
sites are neighbors of the local sites (Fig. 7 for process 0). At this point each process has all the information needed
to build a local parameterization for the sites. All even sites belonging to process 0 are labeled with a progressive
number; then all the odd sites from process 0 are labelled in progression. The same procedure is repeated by each
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Fig. 4. Example of a & 6 grid. The points are labelled by their global index. Points with even (white) and odd (black) parity are distinguished.

PO PO PO Pl Pl Pl
o ° o ° o) °
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° O ° 0 ° o
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PO PO PO Pl Pl Pl
° e ° o ° 0
PO PO PO P2 P2 P2
O ° o) ° o °
PO PO PO P2 P2 P2
™ O ™ o ° o

Fig. 5. Example of a 6 6 grid distributed on 3 processors (according with some user defined partitioning). Each point is labelled by the
identification number of the process that stores it.

process for each process (including itself). The result (for the case in the example) is shown in Fig. 8 (from the
point of view of process 0).
When a field is associated to the lattice the field variables are stored by each process according with the local
parameterization. This guarantees that:
e Boundary sites that have to be copied from the same process are stored continuously in the memory. This
minimizes the need for communications.
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Fig. 6. Example of a & 6 grid endowed with the default (torus) topology. When the topology is assigned to the grid, it is promoted to the rank
of lattice.

local local local from P1 ' ' from P1
o ° ¢} e | O | e

local local local from P1 i ' from P1
) ) ° c . e | O

local local local from P1 i x from P1
@) [ ] O [ ] ! o ! [ ]

local local local from P1 i ' from P1
[ (@) [ ] o ! [ ] ! o

local local local from P2 E : from P2
o ° e e ' O | e

local local local from P2 | ¢ from P2
° O ° c , e | O

Fig. 7. Example of a & 6 lattice form the point of view of process 0. Process 0 knows which sites are local, which non-local sites are neighbors
of the local sites and from which process to copy them.

e Boundary sites copied from the same process (and the local sites as well) of given parity are also stored
continuously in memory. This speeds up loops on sites of given parity.

e When a process X copies a neighbor site from process Y it does not need to allocate a buffer because the data
can be received directly in the memory location where it is normally stored.

Given a site variablg onnyl at t i ce one can ask for theu coordinate using the sintax

x(m)

or the global index
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0 9 1 2 ? 23
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16 8 17 6 1 2 127
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Fig. 8. Example of a & 6 lattice form the point of view of process 0. Process zero assigns a local parameterization to the local sites and to the
neighbor sites of the local points. It cannot access the rest of the sites.

x. gl obal _i ndex()

or the local index

x. | ocal _i ndex()

Moreover one can initialize a site variable specifying the coordinates
X.set(3,2);

the global index

x. set gl obal (26);

or the local index

x.set _local (7); /* assuming MEis 0 */

If x andy are twosi t e variables in the same code defined on the same lattice, but using different partitioning.
One can assigp to x using the assignment operator

X=Y,
This is equivalent to
x.set _gl obal (y. gl obal _i ndex());
4.6. Partitioning and topology
One of the most important characteristicsMP 1. 2 is that one is not limited to a box-like lattice (even if

it has to be a subset of the points in a box) and the sites of the lattice can be associated to an arbitrary topology.
Before stating with weird staff here is the definition of the default function for the lattice partitioning:
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tenpl at e<i nt di n»
int default_partitioning(int *x, int ndim int *nx) {
float tppl=nx[di m/ NPRCC,
i nt tpp2=(int) tppl;
i f(tppl-tpp2>0) tpp2+=1;
return x[dini/tpp2;
s

Any partitioning function takes three arguments:

e Anarrayx[ ndi n] containing the ndim coordinates of a site.

e The dimensionsadi m of the box containing the lattice sites.

e Anarray,nx[ ndi ni, containing the size of box in each dimension.

It returns the identification number of the process that stores the site corresponding to the coordijgte¥?in

One can define a different partitioning just by defining another function that takes the same arguments as the
default one and pass it as third argument to the constructgeokri c_| atti ce. If the new partitioning
function, for a particular input site, returns a number outside the rGng® NPROC- 1, that site is excluded
from the lattice. To this scope the maddOVEHERE is defined. If a site has to be excluded from the lattice the
partition function should returNONHERE. If one defines a partitioning function that excludes some points from
the lattice one is forced to create e user defined topology, otherwise one ends up with sites which are neighbors of
sites that ar&élOAHERE and the program fails.

The default torus topology is defined as

void torus_topology(int mu, int *x_dw, int *x, int *x_up,
int ndim int *nx) {
for(int nu=0; nu<ndim nu++) if(nu==nu) {
x_dw mu] =(x[ mu] - 1+nx[ mu] ) % nx[ nmu] ;
x_up[ mu] =(x[mu] +1) % nx[ ] ;
} el se x_up[ nu] =x_dw nu] =x[ nu] ;

};

Any topology function takes six arguments, they are:

A directionmu in the range tondi m 1.

A first array of coordinates,_dw| ] .

A second array of coordinates], ] .

A third array of coordinates_up|[] .

The dimension:}di m of the box containing the lattice sites.

An array,nx[ ndi n], containing the size of box in each dimension.

The coordinates i[ ] are taken as input and the topology function fills the the arxaybr ] andx_up[ ]
with the coordinates of the neighbor points when moving fropj one step in directiomu down and up,
respectively.

The topology function will only be called for those sitefs] that belong to the lattice. It has to fill dw{ ] and
x_up[ ] with the coordinates of points that have not been excluded from the lattice.

12 Note that at this levesi t e variables are not used. In fact the partitioning function (as well the topology function) is called before the
lattice is defined, and it is used to define it. A site variable can be defined only after a lattice is defined.
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4.6.1. Nonperiodic lattice

As an example one can create a lattice with a true physical boundary by saying, for example, that moving up (or
down) in a particular direction from a particular subset of sites one remains where bhimithe simple case of
a finite box one could define the topology:

voi d box_topology(int mu, int *x dw, int *x, int *x_up,
int ndim int *nx) {
t orus_t opol ogy(rmu, x_dw, x, x_up, ndi m nx) ;
i f(x[rmu]==0) x_dwf mu]=x[nu];
i f (X[ mu]==nx[mu]-1)) x_up[nmu]=x[nu];

b

4.6.2. Hexagonal lattice

Another example of a lattice with a weird topology is the hexagonal grid shown in Fig. 9. The trick to do it is
having a 3D lattice flat in the third direction, put NOWHERE the centers of the hexagons and define the proper
topology for the remaining points. It can be done by the following code

i nt exagonal _partitioning(int x[], int ndim int nx[]) {
i f((x[0]+x[1])%B8==0) return NOMERE;
el se return default_partitioni ng<0>(x, ndi m nx);

O O O O O O
@] (@] O (@] O @]
@] O (@] O O O
O O O O O O
@] O O O O O
@] ) O O O (@]

Fig. 9. Example of a & 6 grid to be used to build an hexagonal lattice (top) and the metric associated to this grid (bottom). The points at center
of the hexagons are excluded from the lattice by the partitioning function.

13 This kind of lattice can be used, for example, to study a 3D solid under stress and study its deformations.
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H

voi d exagonal _topol ogy(int mu, int *x_dw, int *x, int *x_up,
int ndim int *nx) {

if((x[0]+x[1])9%8==1) {
swi tch(mu) {
case 0: x_up[0]=(x[0]+1)%x[0]; x_up[l]=x[1]; break;
case 1: x_up[1l]=(x[1]+1)%x[1]; x_up[0]=x[0]; break;
case 3: x_up[ 0] =(x[0]-1+nx[0]) %mx[ O] ;

x_up[ 1] =(x[ 1] - 1+nx[ 1] ) %x[ 1]; break;

b
x_up[2]=x[2]; x_dw0]=x[0];
x_dw 1] =x[1]; x_dw 2] =x[2];

}

i ((x[0] +x[1]) 98==2) {
switch(mu) {
case 0: x_dw 0] =(x[0]-21+nx[0])%x[0]; x_dw 1] =x[1]; break;
case 1. x_dw 1] =(x[1]-21+nx[0]) %x[ 1]; x_dw 0] =x[0]; break;
case 3: x_dw 0] =(x[ 0] +1) %x[ 0] ; x_dw 1] =(x[ 1] +1) %x[1]; break;
b
x_dw 2] =x[ 2] ; x_up[ 0] =x[ 0] ;
x_up[ 1] =x[1]; x_up[2] =x[2];

1

1

int n=2;
int mybox[]={3*n, 3*n, 1};

generic_lattice exagonal (3, mybox, exagonal partitioning,
exagonal _t opol ogy);

One can observe that we need a flat third dimension to allow for three possible direction. For thisvigason
1. 2 allows to define a lattice with a number of directions different from the number of dimensions. To avoid
entering in a number of technical details we will avoid discussing this possibility here. What one can do with such
a lattice is another matter and will not be discussed. From now on we will concentrate on more regular lattices
which tend to have a more intuitive interpretation.

4.6.3. Antiperiodic boundary conditions

There are two possible meaning for antiperiodic boundary conditions: (1) antiperiodic boundary conditions for
the lattice (i.e. a Moebious topology). (2) antiperiodic boundary conditions for a field defined on the lattice.

The first case can be handled in the same way as any other topology. The second case has nothing to do with the
lattice topology, but is a property of the field and one has to take care of it in the definitapeofat or () for
the field in question.

4.7. Memory optimization

Actually the clasggeneri c_fi el d has more properties of those described. For example each field can be
deallocated at any time if memory is needed:
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struct nystruct { /* any structure */ };
generic_lattice nylatticel(nmydi m, nybox1);
generic_field<nystruct> nyfield(nylatticel);
/* use nmyfield */

myfi el d. deal | ocate_nenory();

generic_lattice nylattice2(nmydi n2, nybox2);
myfield.allocate field(nylattice2);

Note that one cannot reallocate a field using a different structure at the site. This would be very confusing.

5. Examplesof parallel applications

We will present here a few example of parallel application thathi¥e 1. 2. To keep things simple we will
not make use of fields of matrices.

5.1. Electrostatic potential for a given distribution of charges

We consider here the vacuum space inside a cubic metal box connected to ground and containing a given (static)
distribution of charge. We want to determine the electrostatic potential in the box.

The vacuum is implemented as a finite2attice. Two fields, a charge densigyfx) and a potentiak(x), are
defined on it. In the continuum the potential is obtained by solving the Gauss law equation

V2u(x) =g (x). ©)

It discretized form reads
2
Y w4+ = 2u@) +ux =] =qx) (7)
i=0
which can be solved in(x)

2
1 A N
u(x)=—[q<x>+2u(x+i)+u<x—i>}. 8)
6 i=0
Therefore the static potential solution is obtained by iterating Eq. (8) on the vacuum until convergence.
As initial condition we assume that only two charges are present in the box:

qg(x)=38(x — A) —55(x — B), 9)

whereA = (3,3, 3) andB = (17,17, 17). Moreover since the box has a finite extensiontih& t opol ogy will
be used.
Here is the parallel program basedidP 1. 2.

/1 Program applicationl.C

#defi ne PARALLEL

#defi ne Nproc 4

#i ncl ude "MDP_Li b2. h"

#i ncl ude "NMDP_MPI . h"

int main(int argc, char **argv) {
npi . open_wor mhol es(argc, argv) ;
int nybox[]={20, 20, 20};
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generic_lattice vacuun(3, nybox,
default _partitioni ng<0>,
box_t opol ogy) ;

generic_field<float> u(vacuum;

generic_field<float> g(vacuum;

site x(vacuun;

site A(vacuun);

site B(vacuun;

A set (3,3, 3);

B.set (17,17, 17);

float precision, old_u;

forall sitesandcopi es(x) {

u( x) =0;
i f(x==A) a(x) =3;
el se i f(x==B) q(x)=-5;
el se q(x) =0;
b
do {

preci si on=0;
forallsites(x) if((x(0)>0) && (x(0)<nybox[0]-1) &&
(x(1)>0) && (x(1)<mybox[1]-1) &&
(x(2)>0) && (x(2)<nybox[2]-1)) {
ol d_u=u(x);
u( x) =(g(x) +u( x+0) +u( x- 0) +u( x+1) +u( x- 1) +u( x+2) +u( x-2) )/ 6;
preci si ont=pow( u(x)-ol d_u, 2);
b
u. update();
npi . add( preci si on);
} while (sqrt(precision)>0.0001);
u.save("potential.dat");
npi . cl ose_wor mhol es();

b
The saved values can be used to produce a density plot representing the potential in the volume.
5.2. Total impedancein net of resistors

Another problem we want to solve is that of determining the total resistance between two arbitrary points (A
and B) on a semi-conducting finite cylindrical surface. The cylinder is obtained starting from a torus topology and
cutting the torus in one direction (say 0). The total resistance is probed by connecting the terminals of a current
generator () to the points A and B and evaluating the potential at points A and B using Ohm'’s law

~ u(A) —u(B)
- 22

The surface of the semiconductor is implemented as a periodic net of resistances so that each site has four
resistances connected to it, Fig. 10. For simplicity we assume that all the resistances are the same (i.e. the material
is homogeneous). A different choice would be equally possible.

Rap (10)
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Fig. 10. Example of a cylindrical net of resistors.

The potential(x) is computed using the Kirchoff law at each vertex
Yo R = Dux =) —u)] + Ri@[ux +D) —u@]+J =0 (11)
i=0,1
that, solved irn«(x), leads to
Zi:O,l Ri(x — f)u(x -+ Ri(x)u(x + D+ J
2520,1 Ri(x — ;) + Ri(x) .

This equation is iterated on each site until convergence.
Here is the parallel program basedidP 1. 2.

u(x)=

(12)

/'l Program application2.C
#defi ne PARALLEL
#defi ne Nproc 4
#i ncl ude "MDP_Li b2. h"
#i ncl ude "NMDP_MPI . h"
void open_cylinder(int nmu, int *x_dw, int *x, int *x_up,
int ndim int *nx) {

torus_t opol ogy(mu, x_dw, x, x_up, ndi m nx);

i f((mu==0) && (x[0]==0)) x_dwf 0] =x[ 0] ;

i f((m==0) && (x[0]==nx[0]-1)) x_up[0]=x[0];
b
float resistance(int x0, int x1, int nu) {

return (Pi/100*x0);

1
int main(int argc, char **argv) {

npi . open_wor mhol es(argc, argv) ;

i nt mybox[]={100, 20};

generic_lattice cylinder(2, mybox, default_partitioni ng<0>,

open_cyl i nder);
generic_field<float> u(cylinder);
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generic_field<float> r(cylinder, 2);
site x(cylinder);
site A(cylinder);
site B(cylinder);
float precision, old_ u;
float ¢, J=1, deltal, deltaR, Rtot, local Rtot;
A set (15,7);
B.set (62, 3);
forall sitesandcopi es(x) {
u( x) =0;
r(x, 0)=resistance(x(0),x(1),0);
r(x, 1) =resistance(x(0),x(1),1);
b
do
preci si on=0;
forallsites(x) {

ol d_u=u(x);
i f(x==A) { c=+J; printf("%\n", ME); };
i f(x==B) c=-J;

del taJ=c; deltaR=0;
/* the next two lines take care of the finite cylinder */
i f(x+0!'=x) { deltaJ+=u(x+0)*r(x, 0); del taR+=r(x,0); };
i f(x-0'=x) { deltald+=u(x-0)*r(x-0,0); deltaR+=r(x-0,0); };
del taJ+=u(x+1) *r (x, 1); del taR+=r(x, 1);
del taJ+=u(x-1)*r(x-1,1); deltaR+=r(x-1,1);
u(x)=del taJ/ del t aR;
preci si ont=pow( u(x)-old_u, 2);
b
u. update();
npi . add( preci si on);
} while (sqgrt(precision)>0.00001);
Rt ot =0;
if(Ais_in()) Rot+=u(A)/J;
if(B.is_in()) Rot-=u(B)/J;
npi . add( Rt ot) ;
if(ME==0) printf("RARB=%\n", Rot);
npi . cl ose_wor mhol es();

b
5.3. Ising model

One more full application we wish to consider is the study of the total magnetization of a spin system under
a magnetic field (this is also known as the Ising model) as function of the temperature. As usual we define a
lattice that represents the geometry of the spin system, and associate to the sites(a)field-1, +1}. This is
schematically represented in Fig. 11. The Hamiltonian of this system is

H=—BY s)AX,)s() =k Y s)hx), (13)
X,y X
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Fig. 11. Example of a 2D spin system.

whereh(x) is an external magnetic fiel@ = 1/ T is the inverse temperature ards a constant typical of the
material (in principle one could promateto be a field for non-homogeneous materidlgx, y)is 1if |x — y| =1,
0 otherwise. In the example we consider a two dimensional spin system but the extension to arbitrary dimensions
is trivial: just changerybox. Moreover we implement a simpleont ecar | o_nul ti hit algorithm [7] to
minimizes the action in presence of thermal fluctuations.

Here is the parallel program basedidP 1. 2.

/1 Program application3.C
#def i ne PARALLEL

#i ncl ude "MDP_Li b2. h"

#i ncl ude "MDP_MPI . h"

PL LT PEE bbb rri i rrri g
class scalar_field: public generic_field<float> {
publi c:
i nt ndi mnc;
scal ar_field(generic_lattice &) {
allocate_field(a, 1);
ndi mFa. ndi m
b
float &operator() (site x) {
return *(address(x));
s
s

PO TTEEEEr bbb bbb rrrri
class ising_field: public generic_field<int> {
publi c:

i nt ndi mnc;
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float beta, kappa;
ising _field(generic_lattice &) {
allocate_field(a, 1);
ndi mFa. ndi m
s
int &operator() (site x) {
return *(address(x));
1
friend void set _cold(ising field &S) {
site x(S. lattice());
forallsites(x) S(x)=1;
1

friend void nontecarlo multihit(ising field &S, scalar field &H
int n_iter=10, int n_hits=3) {
int iter, parity, hit, new_spin, nmu;
float delta_action;
site x(S.lattice());
for(iter=0; iter<n_iter; iter++) {
for(parity=0; parity<=1l; parity++)
forallsitesofparity(x,parity) {
for(hit=0; hit<n_hits; hit++) {
del ta_acti on=S. kappa*H( x) ;
for(mu=0; nmu<S.ndinm nu++)
del ta_acti on-=S(x+mu) +S( x- mu) ;
new_spin=(S.lattice().randomx).plain()>0.5)?1:-1
delta_action*=S. bet a*( new_spi n- S(x));
i f(exp(-delta_action)>S.lattice().random(x).plain())
S(x) =new_spi n;
i
b
S. updat e(parity);
¥
i
friend float average_spin(ising field &S) {
float res=0;
site x(S. lattice());
forallsites(x) res+=S(x);
npi . add(res);
return res/(S.lattice().nvol _gl);
¥
¥

int main(int argc, char **argv) {
nmpi . open_wor mhol es(argc, argv);

i nt conf, Nt her mr=100, Nconfi g=100;
i nt nmybox[]={64, 64};
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generic_lattice nylattice(2, nybox);

ising field S(nylattice); /* ths spin field +1 or -1 */
scalar _field H(rmyl attice); /* the external nagnetic field */
site x(mylattice);

JackBoot j b(Nconfig, 1);

jb.plain(0);

S. bet a=0. 5; /* inverse square tenperature */
S. kappa=0. 1; /[* coupling with the total extarnal field */

/* setting initial conditions */
forallsites(x) {

S(x)=1; /* initial spins set to +1 */

H(x)=0; /* external magnetic field set to zero */
i
S. updat e();
H. updat e() ;

i f( ME==0)
printf("Beta\tMagnetization\terror\n");

/* 1 oopi ng on values of beta */
for(S. beta=0.20; S. beta<0.60; S. beta+=0.01) {
/* termalizing configuration */
for(conf=0; conf<Ntherm conf++)
nontecarlo_multihit(S, H;

/* generating Nconfig configurations for each val ue of beta */
for(conf=0; conf<Nconfig; conf++) {

nontecarl o _multihit(S, H;

j b(conf, 0)=average_spi n(S);
1
i f( ME==0)

printf("%\t%\t%\n",
S.beta, abs(jb.nean()), jb.j_err());

b
nmpi . cl ose_wor mhol es();

return O;

141

The output of this program (fdr(x) = 0) has been plotted and reported in Fig. 12. It clearly shows that when the
temperature is highd(= 1/ T is low) the average magnetization fluctuates around zero while, when the temperature
is low (8 if high), all the spins tend to become parallel giving origin to a total magnetization different from zero.

The critical temperature where the phase transition (the jump) occurs is, for the 2D model

1 2

= —=—— %  ~29269
Be  log(l++/2)

(14)
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Fig. 12. Total average magnetization in a two-dimensional spin system as function of the inverse temperature. The jump corresponds to a phase
transition.

Note that the only reference to the number of dimensions is in the funtéion( ) in the lines

int mybox[]={64, 64};
generic_lattice nylattice(2, nybox);

These are the only lines to change to generalize the program to more than 2D. For bigger volumes one may also
want to change the total number of computed configuratdormnf i g and the steps to thermalizatibihher m

5.4. Solid under stress

Many other parallel applications could be developed relatively easy MRg1. 2. For example, one may be
interested in studying the deformation of a solid under stress. The solid can be approximated with a finite lattice
of given arbitrary shape and each site would be connected to its next-neighbor and next—next-neighbor sites with
springs. One needs at least 4 fields on this latiide K, G, Q and P, whereM is the mass density of the solif;
the spring constan a parameter determining the internal friction of the sofidhe physical (spatial) coordinates
of each site P the momentum associated to each site. The problem of determining the deformations of this solid
can be solved by iterating a discretized form of the Hamilton equations

dH(P,0,K,G)

Prrar(x) — Pi(x) = === A = F(x, Q, P, K, G) AL, (15)
90 (x)
0H(P,0,K,G
Oriar(x) — Qs (x) = %Ar = P(x)/M(x)At. (16)
(x)

These equations translates into

float delta_t=0.000001; /* a small nonzero positive nunber */
foral |l sites(x)
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for(mu=0; mu<3; mu+) {

F[mu] =/ * some function of K, G QP */
P(x, mu) =P(x, mu) +F(rmu) *del ta_t;

Q(x, mu) =Q(x, mu) +P(x, nu)/ ntdelta_t;
i

P. updat e();

Q updat e();

The expression of the functiaf can be quite complicated depending on how one models the solid.
5.5. Lattice QCD

MDP 1.2 has been used to develop a parallel package for large scale Lattice QCD simulations called
Fer mi QCD[8,9]. Here we only list some of its main features.

The typical problem in QCD (Quantum Chromo Dynamics) is that of determining the correlation functions of
the theory as a function of the parameters. From the knowledge of these correlation functions one can extract
particle masses and matrix elements to compare with experimental results from particle accelerators.

On the lattice, each correlation function is computed numerically as the average of the corresponding operator
applied to elements of a Markov chain of gauge field configurations. Both the processes of building the Markov
chain and of measuring operators involve quasi-local algorithms. Some of the main features implemented in
Fer mi QCDare:

e works on a single process PC,
works in parallel with MPI,
arbitrary lattice partitioning,
parallel I/O (partitioning independent),
arbitrary space-time dimension,
arbitrary gauge group S,
anisotropic Wilson gauge action,
anisotropic Wilson fermionic action,
anisotropic Clover improved action,

D234 improved action,

Kogut—Susskind improved action,

ordinary and stochastic propagators,

minimal residue inversion,

stabilized biconjugate gradient inversion,

twisted boundary conditions for largenumerical perturbation theory (all fields),
reads existing CANOPY data,

reads existing UKQCD data,

e reads existing MILC data.

In Table 2 we show a few examples of FermiQCD Object Oriented capabilities (compared with examples in the
standard textbook notation for Lattice QCD [9]).

6. Timing and efficiency issues

The issue of efficiency of a parallel program is not a simple one, in fact there are many factors to take into
account. In particular the efficiency scales with the number of parallel processes, with the size of the data that need
to be communicated between processes, and with the total volume of the lattice.
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Table 2
Example ofFer mi QCD statements
QCD FermiQCD
Algebra of Euclidean gamma matrices
A= yhy5e3r? Matrix A

A=Ganmma[ mu] * Gamma5* exp(3* | *Gamma[ 2] ) ;

Multiplication of a fermionic field for a spin structure

Va x () = (2 +m)yx + )

/* assum ng the follow ng definitions
generic_lattice space_tine(...);

ferm _field chi(space_tinme, Nc);

ferm _field psi(space_tinme, Nc);

site x(space_tine);

*/

forallsites(x)

chi (x) =( Gamma[ 3] +m) *psi ( x+nu) ;

Translation of a fermionic field

Vx,a: xa(x) = U, Wa(x + Q)

forallsites(x)
for(a=0; a<psi.Nspin; a++)

chi (x, a) =U(x, mu) *psi (x+mu, a) ;

The dependence of the efficiency on these variables cannot be in general factorized because of non-linearities
introduced by modern computer architectures (for example, caches effects, finite memory, memory speed/CPU

speed, latencies, etc.).

To give an idea of how a parallel computer program basedMoi scales with the number of processes, we

consider the following program.

/'l program |Iaplace.C
#def i ne PARALLEL

#i ncl ude "MDP_Li b2. h"
#i ncl ude "MDP_MPI . h"

int main(int argc, char **argv) {
npi . open_wor nhol es(argc, argv);
i nt box[4]={8, 12,12, 12};
generic_lattice space(4, box);
Matrix_field U(space, 3, 3);
Matrix_field V(space, 3, 3);
site x(space);
forallsites(x) {
V(x) =space. randon{x). SU(3);
U( x) =0;
¥
U. updat e();
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V. updat e() ;
for(int i=0; i<10000; i++) {
forallsites(x)
U( x) =0. 125*(cos( U(x) +V(x)) +
U(x+0) +U( x- 0) +
U(x+1) +U( x- 1) +
U(x+2) +U(x- 2) +
U(x+3) +U(x-3));
/* unconment to print convergence
i f(ME==0) {

x.set(0,0,0,0);

printf("%\n", real (Ux,0,0)));

b

*/

U. updat e();
i
V.save("V_field.dat");
U save("U field.dat");
nmpi . cl ose_wor mhol es();
return O;

H

It solves a 4-dimensional Laplace equation for a field of 3 matrices, and performs some parallel 10 as well.
The reader can work out the details of the program as an exercise.

We ran the same program for different lattice volumiés= T x L3 and on different sets of processors
(N = number of processors). Each processor (node) is a 700 MHz Pentiumlll PC. The nodes are connected using
Myrinet cards/switches.

For each run we measured the total tini&, L, N) and we then computed the efficiency according with two
possible definitions+*

t(T,L,1)

er(T. L) = 100—— =2 (17)
Ni(T.L.N)
t(x,L,1)
Lx)=1 . 1
e2(N. L, x) =100 7r—— (18)

The first definition is applicable to computations in which the problem size is fixed and one varies the numbers of
processors. The second definition is applicable to computations for which the size of the problem increases with
the number of processors available. In both cases the efficiency is nhormalized to 100%. In an ideal world (without
latencies and with instantaneous communications) both these efficiencies should be constant and equal to 100%.

In Figs. 13, 14 we plo¢; ande; for our runs and the maximum time spent in communications by the nodes (as
computed byVDP) that we call-. The normalizations are given by

1(60,4,1) =788 s
1(60,8,1) = 6417 s
1(60,12,1) = 6417 s
1(2,8,1) =201 s

141n the context of Lattice QCD simulation, up to an overall normalization, the first definition is the one used at Fermilab to benchmark
parallel software, the second is the definition used by the MILC Collaboration.
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Fig. 13. Efficiencye; as function ofN andL, for T = 60 (the number 60 has been chosen because it has the biggest number of integer factors
within the number of available processors).

100
90 - o 8
80 . ® ¢,(2N,8,N)
] = r(2N,8,N)
70 . ® ¢,(8N,8,N)
] = r(8N.8,N)
e0 | e I e S -9-0-0000000000000000000
= 50
()
40 + e x
» - - =
30
20 - a
10 | L e = " " L L] i
0 4 1 Il
0 1 2 3 4 5
log,N

Fig. 14. Efficiencyes as function ofN, for T = 2N andL = 8.
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1(8,8,1) =834 s

These numbers can be further reduces by writing a user defined function that optimizes the critical computation
done in the line

U(x) =0. 125* (cos(U(x) +V(Xx) ) +---.
From the plots we observe that with good approximation
e; ~100—r (19)

for both the definitions of efficiency.

Eventually, forN bigger than someéo, the total time becomes totally dominated by communication (the time
spent in communications goes to 100%) andtarts to scale as/V.

Note that the answer to the question “how many processors should | use?” is not addressed in this paper
because, in financial terms, this depends on the subjective utility function of each individual user. The only general
conclusion is thatv should be less thaNp.

A different algorithm may scale in a different way even if the qualitative behavior of the efficiency should be the
same. Some algorithms may require more communications than others and may result in a bigger loss of efficiency
when running in parallel.
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LICENSE for MDP 1.2
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STATED IN WRITING. THE AUTHOR PROVIDESMDP 1.2 “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
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