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We present preliminary results for the second moment of the pion's distribution amplitude. The lattice for- 
mulation and the phenomenological implications axe briefly reviewed, with special emphasis on some subtleties 
that arise when the Lorentz group is replaced by the hypercubic group. Having analysed more than half of the 
available configurations, the result obtained is (~2)L = 0.06 4- 0.02. 

1. I N T R O D U C T I O N  

The distribution amplitude ¢(xl, x2) gives the 
probability for finding two collinear partons with 
fractions xl and x2 of the meson's momentum [1]. 
It plays an important role e.g. in exclusive hard 
scattering processes and in non-leptonic decays 
of heavy mesons, since it allows one to separate 
a hard scattering amplitude, computed in pertur- 
bation theory, from the effect of the soft Fourier 
modes, whose dynamics is non-perturbative. 

For example, the relevant diagram for the pion 
electromagnetic form factor is shown in Fig. 1. 
The form factor is defined as: 

(~(p')lV.l~(p)) = F(q2)(p + p')~, (1) 

and can be written in terms of the distribution 
amplitude: 

F(Q 2) = 

[dx][dy] C*(z, Q2)TH(x, Q2)¢(y, Q2) (2) y; 

where [dx] = dxldx25(xl +x2 -1 ) ,  and TH is the 
perturbative amplitude computed at the quark 
level. 

The amplitude ¢ is given by the non-local 
Fourier transform of the matrix element of the 
fermionic bilinear [2]: 

ab Cat~(x ' Q2) ~ F T  [(OIT¢~,(zl)~bb~(z2)lr)] (3) 

A light-cone expansion relates ¢ to fermion bilin- 
ears with covaxiant derivatives. In particular the 
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Figure 1. Photon-pion interaction, factorised into 
a hard (perturbative) scattering amplitude and a 
non-perturbative part described by the pion dis- 
tribution amplitude. 

m-th moment, 

(4) 

can be extracted from the matrix element of the 
lowest-twist operator appearing in the OPE of 
Eq. 3: 

(0lO~o....~ (0)I~(P)) = AP .o . . .P . .~  (~'~)+'" .(5) 

where 

Ot, o...t,,~(O) = ( - i ) " ¢  %,0% Dm . . -D, .~ ¢ (6) 

and the ellipses indicate terms that are propor- 
tional to p2g~,,~,j. 

The distribution amplitude has been studied in 
recent years using sum rules (see results quoted 
in [1]) and lattice simulations [3,4]. The accu- 
racy of the lattice determinations so far has not 
been good enough to compare precisely with sum 
rules predictions. The aim of the current study is 
to use modern lattice technology to improve the 
precision of the result. 
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2. L A T T I C E  D E T A I L S  

The following UKQCD quenched configura- 
tions have been used to compute the relevant ma- 
trix elements. 

• /~ = 6.2, a -1 = 2.64 ± 0.10 GeV, 243 x 48 
lattice; 

• SW action, with Csw = 1.61; 

the three t¢ values used in our simulation 
(0.13460, 0.13510, 0.13530) correspond to 
physical light pseudoscalar masses ranging 
from 350 to 850 MeV. 

180 configurations are available, the results 
presented here are based on the analysis of 
a subset of 129; 

non-improved local operators have been 
used, without fuzzing of the light quarks. 

3. P O W E R - L I K E  D I V E R G E N C I E S  

In this work, we concentrate on the second mo- 
ment of the distribution amplitude, i.e. m = 2 in 
Eq. 5 and 6 above. The choice of the Lorentz in- 
dices for O~om~ 2 is crucial in order to avoid mix- 
ing with lower-dimensional operators. We choose 
#o to be the time-direction. It is convenient, but 
not necessary, to avoid time-derivatives and hence 
we do not symmetrise P0 with #1, #2. Using the 
notation of [5] to classify the irreducible represen- 
tations of the hypercubic group, we obtain: 

0.[~,~] , with p # u # a #/z and symmetrised 

over u and a, transforms like a (½, ½) ¢ 8 
reducible representation, and therefore does 
not mix with lower dimensional operators. 
However the 8 irrep leads to a term propor- 

tional t o p ~  Pv P ~ _ p  , where r is the 

fourth available index, which needs to be 
subtracted in order to have an operator pro- 
portional to p~,p~p¢, as in the continuum 
limit. This subtraction is performed in the 
definition of R1 below. Note that  two spa- 
tial components of p need to be non-zero to 
get a non-vanishing signal. 

O~w, with p ¢ v  transforms like a (½, ½)~8 
representation; however the subtracted op- 
erator: 

0~11 ---- (0411 042220433' ) 

• simply tran.qforms like 8. In this case there 
is no mixing, and a non-zero signal is ob- 
tained with just one non-vanishing compo- 
nent o f p  = (1,0,0). 

4. P R E L I M I N A R Y  R E S U L T S  

The 
from suitably defined two-point functions. 
a generic operator Q: 

c ? ( t )  = e'px<Q(x,t) 
x 

t---],oo Z ~-~ <OIQ(O)l~r(p)) e - s t  

where Z = <~(p)1~5¢(0)10). 
For large time separations: 

C ° ( t )  _ 2C° ( t )  
R1 = ~ p--(1,1,0) 'A " C {  (t) p=(1,0,0) 

relevant matrix elements are extracted 
For 

= p lP2(~ 2) 

R2 = C ° '  ( t ) / c A ( t )  

= <d> 

(7) 

Only the results for the heavier ~ are presented 
here. The pion propagator is shown in Fig. 2. 
The effective mass and single-exponential fits give 
consistent results for 6 < t < 15. Since the rel- 
ative error on the signal of interest for the sec- 
ond moment becomes large for t > 15, the fit- 
ting ranges chosen in this work are shorter than 
the ones usually used for light spectroscopy. De- 
spite this discrepancy, our value for f~ agrees with 
other UKQCD determinations from the same set 
of configurations within 2a. 

The time dependence of R2, obtained from 129 
configurations, is given in Fig. 3. We have cur- 
rently analysed Ri  on 55 configurations only. In 
order to compare the two determinations, the re- 
suits for Ri  are also displayed in the same figure. 
The agreement between the two sets of results is 
good. At this preliminary stage R2 alone is used 
to extract our final number. 



L, Del Debbio et al./Nuclear Physics B (Proc. Suppl.) 83-84 (2000) 235-237 237 

10 "2 

10 -3 

10 -4 

"0,.. 
"'0- 

I- 

"0 

'qk 

1 0  - s  . . . .  t . . . .  t , , 

5 10 15 

time 

Figure 2. Pion propagator from 129 configura- 
tions at s = 0.13460 
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Figure 3. Ratios of two-point functions Rz and 
R2 for s = 0.13460. The results for R1 and R2 
are obtained from 55 and 129 configurations re- 
spectively. 

plicative renormalisation of the operator has yet 
to be calculated, either perturbatively or non- 
perturbatively. 

Our preliminary result for the value of (~2) sug- 
gests that it is lower than the value predicted 
by sum rules. Such a result could be explained 
for example by a more peaked distribution for 
around the origin. 

Computations of the distribution amplitudes of 
the p meson and the proton are currently un- 
der way. Our analysis can also be extended to 
the case of non-degenerate quarks and so a study 
of the distribution amplitudes of the K and B 
mesons is feasible. 
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5. CONCLUSIONS 

Fitting the points in Fig. 3 to a constant yields 

(~2)L = 0.06 -4- 0.02 

for the lattice value of the second moment of the 
pion distribution amplitude. The analysis of the 
complete set of available configurations for both 
R1 and R2, together with a full discussion of the 
systematic errors, will be presented in a forth- 
coming publication [6]. The statistical error in 
our result will of course decrease as the num- 
ber of configurations is increased. The multi- 


