
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 140.192.180.252

This content was downloaded on 16/09/2014 at 15:07

Please note that terms and conditions apply.

Towards a lattice determination of the B*Bπ coupling

View the table of contents for this issue, or go to the journal homepage for more

JHEP10(1998)010

(http://iopscience.iop.org/1126-6708/1998/10/010)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1126-6708/1998/10
http://iopscience.iop.org/1126-6708
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
0
(
1
9
9
8
)
0
1
0

Received: September 7, 1998, Accepted: October 12, 1998
HYPER VERSION

Towards a lattice determination of the B∗Bπ
coupling

UKQCD Collaboration

Giulia M. de Divitiis, Luigi Del Debbio, Massimo Di Pierro

and Jonathan M. Flynn

Dept. of Physics and Astronomy, Univ. of Southampton,

Southampton SO17 1BJ, UK

E-mail: giulia@hep.phys.soton.ac.uk, ldd@hep.phys.soton.ac.uk,

mdp@hep.phys.soton.ac.uk, j.flynn@hep.phys.soton.ac.uk

Chris Michael and Janne Peisa∗

DAMTP, Univ. of Liverpool, Liverpool L69 3BX, UK

E-mail: cmi@liv.ac.uk, J.J.Peisa@swansea.ac.uk

Abstract: The coupling gB∗Bπ is related to the form factor at zero momentum of

the axial current between B∗- and B-states. This form factor is evaluated on the
lattice using static heavy quarks and light quark propagators determined by a stochastic

inversion of the fermionic bilinear. The gB∗Bπ coupling is related to the coupling g

between heavy mesons and low-momentum pions in the effective heavy meson chiral

lagrangian. The coupling of the effective theory can therefore be computed by numerical

simulations. We find the value g = 0.42(4)(8). Besides its theoretical interest, the

phenomenological implications of such a determination are discussed.

Keywords: Lattice Gauge Field Theories, B-Physics.

∗Present address: Dept. of Physics, Univ. of Wales Swansea, Singleton Park, Swansea SA2 8PP,
UK.

mailto:giulia@hep.phys.soton.ac.uk
mailto:ldd@hep.phys.soton.ac.uk
mailto:mdp@hep.phys.soton.ac.uk
mailto:j.flynn@hep.phys.soton.ac.uk
mailto:cmi@liv.ac.uk
mailto:J.J.Peisa@swansea.ac.uk
http://jhep.sissa.it/stdsearch?keywords=Lattice_Gauge_Field_Theories+B-Physics


J
H
E
P
1
0
(
1
9
9
8
)
0
1
0

Contents

1. Introduction 1

2. Pion reduction 5

3. Lattice results 6

3.1. Stochastic propagators 6

3.2. Lattice computation 8

4. Renormalisation constants 14

5. Phenomenological implications 17

6. Conclusions 20

1. Introduction

The precise determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix will pro-

vide a stringent consistency test of the Standard Model (SM), together with new han-

dles to understand CP violation and search for hints of new physics. As far as the

heavy flavour sector is concerned, a large amount of experimental data is expected

from B-factories and CLEO in the near future. Non-perturbative QCD effects are

the main source of systematic error in the extraction of fundamental parameters from

experimental data: reliable results depend on some way to tame the large-distance

dynamics.

Lattice simulations provide a powerful tool to investigate non-perturbative dynamics

from first principles, but systematic errors are introduced by the finite lattice spacing

and the restricted range of quark masses which may be simulated. A different approach

is based on exploiting exact or approximate symmetries of the theory to write effective

lagrangians describing the large distance behaviour in terms of effective meson fields.

The chiral symmetry of strong interactions in the limit where mq → 0 constrains

the terms appearing in the chiral lagrangian. The couplings in this lagrangian are

phenomenological inputs, which need to be taken either from experimental data or

from some other source. On the other hand, when the quark masses tend towards

infinity, heavy quark effective theory (HQET) has proved to be a powerful tool to

study heavy-flavour physics. However, HQET is less powerful when applied to heavy-

to-light transitions, like B → π, where the normalisation of matrix elements is not
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fixed by the symmetry. A combination of these two symmetries has been used in recent

years to develop the heavy meson chiral lagrangian (HMχ), describing the interactions

of low-momentum pions with mesons containing a single heavy quark [1] (for reviews

see [2, 3]).

The definitions and notations used throughout this paper are conveniently intro-

duced by a succint description of the building blocks of this effective theory.

For the heavy degrees of freedom, heavy quark symmetry predicts that the wave

function of a heavy meson is independent of the flavour and spin of the heavy quark,

leading to a covariant representation of heavy mesonic states [4]. The angular momen-

tum j and the parity P of the light degrees of freedom determine a degenerate doublet

of states with spin–parity JP = (j ± 1/2)P . The pseudoscalar and vector mesons (e.g.
B and B∗) correspond to the j = 1/2 case and are described by a 4 × 4 Dirac matrix
H with two spinor indices, one for the heavy quark and one for the light degrees of

freedom. In terms of the effective meson fields:

H =
1 + v/

2

[
B∗µγ

µ −Bγ5
]
, H = γ0H†γ0 , (1.1)

where v is the velocity of the meson and B and B∗ are the annihilation operators for
particles containing a b quark in the initial state. These meson fields are used in the

effective lagrangian to describe the heavy mesons. The light mesons are treated as an

octet of pseudo-Goldstone bosons according to the usual chiral lagrangian formalism.

At low-momentum the strong interactions of B and B∗ mesons with light pseudoscalars
are described by the couplings in the effective lagrangian; the lowest order interaction

is given by [1, 3]

LintHMχ = gTr(HaHbAbaµ γµγ5) , (1.2)

where

Aµ = i

2
(ξ†∂µξ − ξ∂µξ†) (1.3)

with ξ = exp(iM/f). M is a 3× 3 matrix of π, η and K fields

M =


π0/
√
2 + η/

√
6 π+ K+

π− −π0/√2 + η/√6 K0

K− K̄0 −
√
2/3η


 (1.4)

and the trace is over Dirac indices. At tree level f can be set equal to fπ (the definition

of the decay constant used here sets fπ = 132MeV). The roman indices a and b denote

light quark flavour and repeated indices are summed over 1, 2, 3. The expansion of A
in terms of pion fields begins with a linear term,

Aµ = −1
f
∂µM+ · · · (1.5)

The coupling g in eq. (1.2) can easily be related to the B∗Bπ coupling defined
as [5, 6]

〈B0(p)π+(q)|B∗+(p′)〉 = −gB∗Bπ(q2)qµηµ(p′) (2π)4 δ(p′ − p− q) , (1.6)
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where ηµ is the polarisation vector of the B∗ and the physical states are relativistically
normalised:

〈B(p)|B(p′)〉 = 2p0(2π)3δ(3)(p− p′) . (1.7)

The physical coupling gB∗Bπ is given by the value of the above form factor for an

on-shell pion:

gB∗Bπ = lim
q2→m2π

gB∗Bπ(q
2) . (1.8)

At tree level in the heavy meson chiral lagrangian, the above matrix element is

〈B0(p)π+(q)|B∗+(p′)〉 = −2mB
fπ

g qµη
µ(p′) (2π)4 δ(p′ − p− q) , (1.9)

which therefore yields

gB∗Bπ =
2mB
fπ

g . (1.10)

As a result, g and gB∗Bπ are considered as equivalent throughout this paper. The

above relation can be extended to take into account higher-order terms in the HMχ

lagrangian [7, 8, 9].

Starting from eq. (1.6) and performing an LSZ reduction of the pion field, the

coupling g is related to the form factor at zero momentum-transfer of the axial current

between hadronic states. Such a relation is the analog, in the Bπ system, of the

Goldberger-Treiman relation, relating the nucleon electromagnetic form factor to the

nucleon-nucleon-pion coupling. An important consequence of the Goldberger-Treiman

relation, for our purposes, is that it allows a numerical evaluation of the gB∗Bπ coupling,

as the form factors of the axial current can be evaluated by a lattice simulation. The

details of the pion reduction are presented in sect. 2.

The interest of such a computation is twofold. From a theoretical point-of-view, it

is interesting per se to be able to fix, from lattice QCD, the coupling appearing in the

heavy meson chiral lagrangian. On the other hand, it is important to stress that this

determination also has phenomenological motivations. Assuming vector dominance in

the B → πlν decay, the coupling gB∗Bπ fixes the normalisation of the form factors used

to parametrise the matrix element of the weak vector current, V µ = ūγµb, between

hadronic states. Defining the form factors by

〈π+(p′)|V µ|B̄(p)〉 = f1(q
2)(p+ p′ − m2B −m2π

q2
q)µ + f0(q

2)
m2B −m2π

q2
qµ =

= f+(q
2)(p+ p′)µ + f−(q2)qµ , (1.11)

where q = p − p′ is the transferred momentum, the contribution from the B∗ channel
is easily evaluated:

f1(q
2) =

gB∗Bπ
2fB∗

1

1− q2/m2B∗
. (1.12)
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The normalisation of the form factor therefore depends on the B∗Bπ coupling and the
decay constant of the vector meson, defined as

〈0|V µ|B̄∗(p)〉 = im
2
B∗

fB∗
ηµ(p) . (1.13)

Heavy quark symmetry and chiral symmetry justify this pole form for f1 when q
2 is

close to q2max = (mB−mπ)2 [1, 7, 8, 9, 10, 11]. For q2 far from q2max, the pole form may be

taken as a phenomenological ansatz. However, we note that the functional dependence

of the form factor in eq. (1.12) cannot be simultaneously consistent with heavy quark

symmetry at large q2, which demands that f1(q
2
max) ∼ m

1/2
B and the light-cone sum rule

scaling relation at q2 = 0, which states f1(q
2=0) ∼ m

−3/2
B [12].1 Nonetheless, by fitting

lattice results, which are available in the high q2 region where the pole form is justified,

we can determine the parameters in eq. (1.12).

It is interesting to remark that the interplay of the effective lagrangian approach and

lattice simulations provides another determination of the form factors for the heavy-

to-light B decays and therefore sheds further light on the theoretical determination of

the non-perturbative effects mentioned at the beginning. This result can be compared

with direct computations of the same quantities obtained by fitting lattice data [14],

using unitarity bounds [15] and sum rules [6, 16].

In the work described here, the matrix element of the light quark axial current

between the heavy mesons is computed in a quenched lattice simulation of QCD in the

static heavy quark limit, using stochastic methods to compute the desired light quark

propagators, as described in sect. 3. The discussion of systematic errors is an important

issue in any lattice calculation and plays a crucial part in estimating the error on the

final result. In this respect, it is important to stress here that we are presenting an

exploratory study. Our main concern is therefore to test the possibility of extracting

the coupling defined above, rather than presenting its best lattice determination. Such

a task would require a more extensive simulation and is left for further studies.

Renormalisation constants are needed in order to connect lattice results with contin-

uum physical observables. Those relevant for the action and the quantities considered

in this paper are summarised in sect. 4.

The best estimate we obtain for g is

g = 0.42(4)(8) . (1.14)

The phenomenological implications of this result are discussed in sect 5.

1Light-cone sum rules have also been applied at large q2 and reproduce the m
1/2
B scaling behaviour

of f1 as demanded by heavy quark symmetry [13].
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2. Pion reduction

An LSZ reduction of the pion in the definition of gB∗Bπ, eq. (1.6), yields

〈B0(p)π+(q)|B∗+(p+ q)〉 = i(m2π − q2)
∫
x
eiq·x〈B̄(p)|π(x)|B∗(p+ q)〉 . (2.1)

Using the PCAC relation

π(x) =
1

m2πfπ
∂µAµ(x) , (2.2)

where Aµ is, as usual, the QCD axial current, eq. (2.1) becomes

〈B0(p)π+(q)|B∗+(p+ q)〉 = qµ 1
fπ

m2π − q2
m2π

∫
x
eiq·x〈B̄(p)|Aµ(x)|B∗(p+ q)〉 . (2.3)

The matrix element of the axial current is parametrised in terms of three form factors

〈B0(p)|Aµ(0)|B∗+(p+ q)〉 = ηµF1(q
2) + (η · q) (2p+ q)µF2(q2) +

+ (η · q) qµF3(q2) (2.4)

yielding for the B∗Bπ coupling

gB∗Bπ(q
2) = − 1

fπ

m2π − q2
m2π

[
F1(q

2) +
(
m2B∗ −m2B

)
F2(q

2) + q2F3(q
2)
]
. (2.5)

In the static limit in which our simulation is performed, the B and B∗ mesons are
degenerate, so that the form factor F2 can be discarded.

Analytical continuation of eq. (2.5) towards the soft–pion limit (q2 → 0), leads to

gB∗Bπ(0) = − 1
fπ
F1(0) . (2.6)

It is commonly assumed, when deriving the Goldberger-Treiman relation, that gB∗Bπ is

a smooth function of q2, and, therefore, that the physical coupling can be approximated

by

gB∗Bπ = gB∗Bπ(m
2
π) ≈ gB∗Bπ(0) . (2.7)

The above equation explicitly shows that, in the soft–pion limit, the B∗Bπ coupling is
related to the form factor of the axial current between B and B∗ states. If one were
working in the chiral limit from the very beginning, the same Goldberger-Treiman

relation, eq. (2.6), would be obtained from the conservation of the axial current.

The relation between gB∗Bπ and g mentioned earlier can be rederived by comparing

the matrix element of the Noether current associated to chiral symmetry both in HMχ

and QCD. In the chiral limit, the Noether currents associated with chiral symmetry, in

QCD and in HMχ, are respectively

j5 abQCD µ = q̄
aγµγ5q

b (2.8)
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B*

π

B

g

B* B

Figure 1: Tree-level diagrams needed to compute the matrix element of the axial current in

HMχ. The dot (•) represents the g-vertex in the HMχ lagrangian; the squares are insertions
of the axial current in eq. (2.9).

and

j5 abHMχ µ = fπ∂µMab − 2g
(
B∗ a †µ Bb +Ba †B∗ bµ

)
+ · · · , (2.9)

where the ellipsis denotes terms with more than one pion or terms containing both

heavy mesons and pions.

The form factors of the axial current in QCD are related to the coupling of the

heavy meson chiral lagrangian by matching the two theories at tree level. The diagrams

needed at tree level to evaluate the matrix element in eq. (2.4) for the HMχ current

are depicted in fig. 1. A straightforward computation leads to

F1(q
2) = −2g mB ,

F3(q
2) =

2g

q2
mB ,

which, together with the Golberger-Treiman relation, reproduces eq. (1.10). One may

also work away from the chiral and heavy quark limits and include corrections for finite

mass pions and heavy quarks in this result.

The determination of g is therefore reduced to the computation of the matrix ele-

ment of the light-light axial vector current between hadronic states. Such an evaluation

can be performed using three-point correlation functions on the lattice. The details of

the calculation are reported in the next section.

3. Lattice results

3.1. Stochastic propagators

The numerical analysis is carried out on 20 quenched gauge configurations, generated

on a 123 × 24 lattice at β = 5.7, corresponding to a−1 = 1.10 GeV. The heavy quark
propagators are evaluated in the static limit [18]. Stochastic propagators [19, 20] are

used to invert the fermionic matrix for the light quarks. They can be used in place

of light quark propagators calculated with the usual deterministic algorithm. The

stochastic inversion is based on the relation

Sij =M
−1
ij =

1

Z

∫
Dφ (Mjkφk)∗φi exp

(
−φ∗i (M †M)ijφj

)
, (3.1)
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where, in our case, M is the tadpole improved SW fermionic operator and the indices

i, j, k represent simultaneously the space-time coordinates, the spinor and colour in-

dices. Two values of κ are considered, κ1 = 0.13843 and κ2 = 0.14077, with csw = 1.57.

The lighter value κ2 corresponds to a bare mass of the light quark around the strange

mass. The chiral limit corresponds to κc = 0.14351 [21]. For every gauge configuration,

an ensemble of 24 independent fields φi is generated with gaussian probability

P [φ] =
1

Z
exp

(
−φ∗i (M †M)ijφj

)
. (3.2)

All light propagators are computed as averages over the pseudo-fermionic samples:

Sij =



〈(Mφ)∗jφi〉
or

〈(γ5φ∗)j (Mφγ5)i〉
, (3.3)

where the two expressions are related by S = γ5S
†γ5. Moreover, the maximal variance

reduction method is applied in order to minimise the statistical noise [19]. Maximal

variance reduction involves dividing the lattice into two boxes (0 < t < T/2 and

T/2 < t < T ) and solving the equation of motion numerically within each box, keeping

the spinor field φ on the boundary fixed. According to the maximal reduction method,

the fields which enter the correlation functions must be either the original fields φ or

solutions of the equation of motion in disconnected regions. The stochastic propagator

is therefore defined from each point in one box to every point in the other box or on

the boundary. For this reason, when computing a three-point correlation function

〈0|J(t1, x)O(t0, y)J†(t2, z)|0〉 , (3.4)

one operator — O in the present work — is forced to be on the boundary (t0 = 0 or
T/2) and the other two must be in different boxes, while the spatial coordinates are

not constrained. If j is a point of the boundary, not all the terms in (Mφ)j lie on the

boundary because the operator M involves first neighbours in all directions. Hence,

whenever a propagator Sij is needed with one of the points on the boundary, we use

whichever of the two expressions in eq. 3.3 has the spinor Mφ computed away from the

boundary.

In smearing the hadronic interpolating operators, spatial fuzzed links are used.

Following the prescription in [19, 22], to which the interested reader should refer for

details, the fuzzed links are defined iteratively as

Unew = P
(
fUold +

4∑
i=1

Ubend,i

)
, (3.5)

where P is a projector over SU(3) and Ubend,i are the staples attached to the link in the
spatial directions. We take f = 2.5 and use two iterations with fuzzed links of length

one. The smeared fermionic fields are defined following [22].
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3.2. Lattice computation

In order to extract g, the three-point correlation function C3 and the two-point correla-

tion function C2 for local (L) and fuzzed (F ) sources are computed. The FF three-point

function is defined as

CFF3 µν(x; t1, t2) =
1

V

∫
d3y 〈0|JB∗ν (y,−t1)Aµ(x+ y, 0)JB †(y, t2)|0〉 , (3.6)

where JB
∗
ν and JB are fuzzed operators with the quantum numbers corresponding

respectively to the B∗ and B states. Analogous definitions hold for the FL and LL
cases. For time separations that are large enough to isolate the lowest energy states,

the three-point function is related to the axial current matrix element:

CFF3 µν(x; t1, t2) → 〈0|JB
∗
ν |B∗r 〉

〈B∗r |Aµ(x)|B〉
2mB 2mB

〈B|JB †|0〉e−MB(t1+t2) =

= ZFηrν(0)
〈B∗r |Aµ(x)|B〉
2mB

ZFe−MB(t1+t2) , (3.7)

where r is the polarisation label of the vector particle, and the sum over polarisations

is omitted. In the static limit considered in this paper, the slope of the exponential

time-decay is not the physical mass of the mesons; it can be interpreted as a binding

energy. Moreover, the two-point functions for the vector and pseudoscalar particles

are degenerate, leading to the same binding energies and Z factors for both the B and

B∗. In order to avoid confusion, the physical mass is denoted by mB and the binding
energy by MB. Z

F is the overlap of the interpolating operator with the physical state,

defined from the two-point functions:

CFF2 (t) =
1

V

∫
V
d3y 〈0|JB(y, 0)JB †(y, t)|0〉

→ (ZF )2e−MBt . (3.8)

Integrating the three-point function over x gives the matrix element for zero mo-

mentum transfer. In this limit, the latter can be expressed in terms of the form factor

F1(q
2) in eq. (2.4).

The sum over polarisations in eq. (3.7) yields

∫
d3x CFF3 µν(x; t1, t2)→ (ZF )2(gµν −

pµpν
m2B
)F1(0)e

−MB(t1+t2) . (3.9)

The last equation shows that the three-point functions with µ 6= ν and µ = ν = 0

should vanish. Therefore, only the correlators with µ = ν = 1, 2, 3 are henceforth

considered.

Moreover, taking rotational symmetry into account, CFF3 (x; t1, t2) is expected to

be a function of the distance r only, up to cut-off effects. The three-point functions
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measured on the lattice are averaged over equivalent x positions.2 The desired matrix

element is obtained from the ratio

Eµ(r, t)
def
= (ZF )2

∑x

r

CFF3 µµ(x, t, t)

CFF2 (t)C
FF
2 (t)

→ 〈B
∗|Aµ(r)|B〉
2mB

ηµ , (3.10)

where the time-dependence cancels when the three-point function is divided by the

product of two-point functions.

The coefficients ZF and ZL are extracted from the exponential fit of the two point

correlation functions C2. The data are reported in fig. 2. As one can see from the plots,

the two-point functions already exhibit a single-exponential behaviour at moderate time

separations. The main sources of error in this computation are expected to stem from

the determination of the three-point function and from the value of the light quark

masses, which are far from the chiral limit. Thus, a single exponential fit of the two-

point functions turns out to be accurate enough for the scope of this study. The value

of ZF is extracted from a direct fit of CFF2 , while Z
L is obtained from CFF2 and CFL2 .

The results of the fit are shown directly on the plot. It is worth remarking that, in all

the channels considered, single-exponential fits yield reasonable values for the reduced

χ2.

The B meson decay constant, in the static approximation, can be extracted from:

f staticB = ZstaticA

√
2

mB
ZLa−3/2 , (3.11)

where ZstaticA is the renormalisation constant for the axial current in the static theory,

which is discussed in the following section and defined in eq. (4.11). The aim here is

not a precise determination of the pseudoscalar decay constant, f staticB . Rather, the

result is presented to allow an estimate of the systematic errors in our computation of

the HMχ coupling, g.

The results of the fits, together with the values for f staticB are summarised in tab. 1.

The B meson binding energies obtained from the fits of CFF2 and CFL2 are consistent

with each other. However, our determination appears to be slightly different from the

2The symbol ∑x

r

indicates the average on all the spatial positions on the lattice compatible with the constraint |x| = r.
On a finite lattice V = L3, only some distances are allowed

r =
√
x21 + x

2
2 + x

2
3

because each xi must be an integer between 0 and L/2. For each allowed distance r, a given number

of terms Nr appears in the above sum, yielding a relative error on each point δEµ(r, t) ∼ N−1/2r , e.g.

N0 = 1; N1 = 6; N√2 = 12; N√3 = 6; . . . ; N√108 = 1

.
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−1.0 •

•

•

•◦

◦

◦

◦

• κ1, MB = 0.930(0.004), Z
2
F = 4.751(0.097), χ

2 = 1.944
◦ κ2, MB = 0.898(0.005), Z

2
F = 4.567(0.098), χ

2 = 1.594

t
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g
C
F
L
2
(t
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•

•

◦

◦

◦

◦

• κ1, MB = 0.934(0.002), Z
2
L = 0.591(0.014), χ

2 = 0.742
◦ κ2, MB = 0.908(0.002), Z

2
L = 0.583(0.015), χ

2 = 1.546

Figure 2: Logarithmic plots of CFF2 (t) and C
FL
2 (t) for both values of κ. The quoted values

refer to the reduced χ2.

one published in [19]. The discrepancy can be explained as a contribution from excited

states, which is subtracted in [19] where a multi-exponential fit is performed. The 1-

state fit yields a value of ZL approximately 20% higher than the one obtained from the

3-state fit. Hence the value obtained for the static B decay constant lies above other

lattice calculations of this quantity [17]. It is striking that the actual number does not

depend on the value of the hopping parameter κ. However the variation, as the bare

mass of the quark goes from ms towards the chiral limit, is also expected to be about

20% and could be obscured by the contamination from excited states.

This is a first, exploratory, direct lattice determination of the coupling g, so the

discrepancies noted above are perhaps expected and could easily arise from various

lattice artefacts. Our value of β is far from the continuum limit, while our action and

operators are not fully O(a) improved. We have not tried to optimise the smearing or

10



J
H
E
P
1
0
(
1
9
9
8
)
0
1
0

κ1 κ2 κc

MBa 0.930(4) 0.898(5) 0.862(7)

(ZF )2 4.75(10) 4.57(10) 4.37(15)

(ZL)2 0.59(1) 0.58(2) 0.57(3)

f staticB (GeV) 0.43(1) 0.43(1) 0.42(2)

Table 1: Values for ZF , ZL, MB and f
static
B obtained from fitting the two-point functions.

fitting procedures. Our ensemble of gauge configurations and the collection of spinor

configurations on each gauge sample are quite small. The calculation is also performed

in the quenched approximation. All of these issues could be addressed in a further

simulation, but here we will keep in mind that the uncertainties will propagate as

systematic errors to our final result for the B∗Bπ coupling.
The generation of stochastic propagators for the light quark and the static approxi-

mation for the heavy quark have proved to be useful tools in this investigation. However,

neither is strictly necessary to calculate the axial current matrix element of interest.

One could combine static heavy quarks with light quark propagators determined by

standard deterministic methods. A full O(a)-improved simulation with heavy quark

masses around the charm mass would allow one to go beyond the static approximation

and study the dependence of g on the heavy mass. The freedom allowed in lattice

calculations to tune quark masses would also allow the light quark mass dependence,

noted above as strikingly absent, to be investigated in more detail.

Returning to the results of the present simulation, the quantity E0(x, t), which is

expected to vanish, is measured as a further consistency check. The data reported in

figs. 3 and 4 show a much smaller signal than the one obtained for Ei(x, t). As t is

increased, the fictitious peak at zero distance decreases, while the noise increases.

Using rotational invariance, the average of the three spatial components of Ei(r, t)

E(r, t) =
1

3
(E1(r, t) + E2(r, t) + E3(r, t)) (3.12)

is measured. The results are reported in figs. 3 and 4, for the two values of κ used

in this simulation. At fixed r, E(r, t) is expected to be independent of t. As this be-

haviour is confirmed by the data, the signal can be improved by averaging the values at

different times, each weighted with its error, yielding a function of the spatial distance

E(r), which needs to be integrated over the three-dimensional volume. Since this is an

exploratory calculation we have neglected the effects of correlations between neighbour-

ing time slices on the error in the average, which would increase the statistical error in

our result. However, we note that the systematic errors considered below in any case

dominate the uncertainty in the values at each time. The time-slices considered in the

average are t = 4, 5, 6. Logarithmic plots of E(r) is displayed in figs. 5 and 6 for both

values of κ, suggesting that the data are consistent with an exponential decay.
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Figure 3: Plots of E0(r, t) and E(r, t) as functions of r for different values of t (= 3, 4, 5, 6)

for κ = 0.13843.

To evaluate the volume integral, E(r) is fitted with a two-parameter exponential

for each value of κ,

f(r) = Se−r/r0 . (3.13)

The results of the fit and the values of the reduced χ2 are recorded on the figures. The

coupling g is finally obtained by integrating analytically the fitted function:

gL = −
∫ ∞
0
4πr2E(r)dr = −

∫ ∞
0
4πr2f(r)dr . (3.14)

The superscript L indicates that these numbers are defined on the lattice using oper-

ators renormalised at the lattice energy scale a−1 = 1.10 GeV. As for the two-point
functions, the value of gL does not appear to depend on the mass of quarks. It is not
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Figure 4: Plots of E0(r, t) and E(r, t) as functions of r for different values of t (= 3, 4, 5, 6)

for κ = 0.14077.

clear from this simulation, whether this is a genuine physical feature or, as explained

earlier, an artefact of the lattice used here. Further studies should aim to clarify this

point.

The best estimate for gL at κ = κc is thus obtained from a weighted average of the

results at the two kappas used in our simulations:

gL = 0.52(5)(10) . (3.15)

The first error is statistical; the second is a conservative estimate of the systematic

error of 20%, based on the systematic error observed in the estimate of fB.
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Figure 5: Plot of E(r) as a function of r for κ = 0.13843.
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Figure 6: Plot of E(r) as a function of r for κ = 0.14077.

4. Renormalisation constants

Quantities evaluated on the lattice are connected to their continuum counterparts by

a finite renormalisation. In order to extract physical information, the matrix element

of a bilinear quark operator defined on the lattice, OL(a), has to be multiplied by the
corresponding renormalisation constant

O(µ) = ZO(aµ, g) OL(a) . (4.1)

which in general depends on the renormalisation scale µ and the details of the lattice

discretization (a single continuum operator may also match onto a set of lattice op-

erators). For partially conserved currents, the µ dependence disappears in the above
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definition, the associated anomalous dimension being equal to zero. This is the case for

the QCD light-light axial current considered here. It is also the case for the heavy-light

current in full QCD, but not for the static-light current onto which it matches in the

effective theory: hence the renormalisation constant ZstaticA in eq. (4.11) below, which

converts the lattice matrix element to the physical f staticB , includes the effect of running

between different scales in the effective theory.

In our simulation, we use the standard gluon action and the tadpole-improved [23]

Sheikholeslami-Wohlert [24] fermion action for the light quarks:

S =
a4

2κ

∑
xy

ψ̄(x)

{[
1− iκ̃a

2u40
σµνFµν(x)

]
δxy (4.2)

− κ̃

au0

[
(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U †µ(y)δx−µ̂,y

]}
ψ(y) ,

where as usual Fµν(x) is a lattice definition of the gluon field strength tensor, κ̃ = κu0
and we define u0 from the average plaquette in infinite volume, u

4
0 = 〈13 TrU2〉. The

redefinition of the parameters in the action is done in order to absorb the large renor-

malisation coming from lattice tadpole graphs [23]. The standard definition of csw,

the coefficient of the σµνFµν term, in this case gives csw = 1/u
3
0. For our lattice,

u0 = 0.86081 from the average plaquette, so that csw = 1.57. For the b quarks we use

the standard static quark action. Here we summarise the required renormalisation con-

stants for the light-light and static-light axial currents with the action and parameters

defined above.

The matrix element of the light-light axial current between an initial state i and a

final state f in the continuum can be written as:

〈f |Aµ|i〉 = ZA〈f |ALµ|i〉 = Z1−loopA

u0

u1−loop0

〈f |ALµ|i〉 . (4.3)

The factor u0, a measure of the average link variable, can be interpreted as a non-

perturbative rescaling of the quark fields in the tadpole improvement prescription.

The 1-loop perturbative renormalisation constant must then be redefined by dividing

out the 1-loop expression, u1−loop0 , corresponding to the chosen definition of u0,

ZtadpoleA = Z1−loopA /u1−loop0 . (4.4)

The overall renormalisation constant is given by the whole factor

ZA = u0Z
tadpole
A . (4.5)

The perturbative part reads

Z1−loopA

u1−loop0

=
1 + αCF

4π
ζA

1 + αCF
4π
λ
' 1 + αCF

4π
(ζA − λ) , (4.6)

where λ = −π2 for our plaquette definition of u0 and ζA = −13.8 [26, 27, 28].
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We note here that the removal of tree-level O(a) discretisation errors is achieved

by combining the Sheikholeslami-Wohlert action for csw = 1 with improved operators,

found by redefining or “rotating” the quark fields [29]. In our simulation, the rotation

has not been applied to the quarks, so the perturbative coefficient ζ above is calculated

using the improved action only. Moreover, in perturbation theory, csw = 1 + O(α), so

we quote ζ above calculated for csw = 1, without rotated light quark fields. In [30] the

light fermion bilinear operator renormalisations are given as functions of csw and an

arbitrary amount of field rotation: using our actual value of csw = 1.57, with no field

rotation, in those results would increase ZA by 5%.

The mean-field improved perturbative expansion is performed in terms of a boosted

coupling constant, α̃, which in our case is chosen as α̃ = α0/u
4
0, where α0 is the bare

lattice coupling constant. We use α̃ for α in eq. (4.6). For our lattice, with β = 5.7

and u0 = 0.86081 from the average plaquette, this leads to

ZA = u0Z
tadpole
A = 0.806 . (4.7)

For the heavy-light axial current computed in the static limit, the renormalisation

constant ZstaticA is found by a three step procedure combining the matching between full

QCD and the continuum static theory at a scale of order mb [31], the continuum static

theory running frommb to a lattice scale q
∗ [32, 33, 34] and finally the matching between

the continuum static and the lattice static theories [35, 36]. Since we have performed

a quenched lattice simulation we encounter the standard problem of matching a zero-

flavour result to a continuum result with active flavours. We adopt a standard procedure

of matching quenched to continuum results at q∗ and then performing the continuum
running with the appropriate number of flavours.3 We extract from the calculation of

Borrelli and Pittori [36] the appropriate matching factor corresponding to our case of

an improved action, but without field rotations on the light quarks. In the notation

of [36] the number we need is

CF (5/4− Aγ0γ5 − dI − f I/2 + (e− ered)/2) = −19.21 . (4.8)

This appears in eq. (4.11) below and contrasts with the values −27.2 for the Wilson
action and −20.0 for the improved action with csw = 1 and field rotations included (We
have recomputed the numerical integrals so these values differ in the last two figures

from those quoted in [36]. The difference is, however, less than 1%).

In the matching to the lattice we will adopt a Lepage-Mackenzie choice [23] of

the scale q∗ at which to perform the matching. This scale is determined from the
expectation value of ln(qa)2 in the one-loop lattice perturbation theory integrals for

the corrections to the renormalisation constant, including the perturbative tadpole

3One could decide to match the lattice to the continuum result at a different scale, then perform

the continuum running with the appropriate number of flavours from that scale to mb. However, for

any choice of the intermediate scale between q∗ and mb, the difference in the final result is of the order
of 2%, which is negligible compared to the systematic error due to the quenched approximation.
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improvement corrections for the chosen definition of u0. For the improved, csw = 1,

ation and plaquette definition of u0, Giménez and Reyes [37] quote q
∗a = 2.29. We will

use this value.

We will also adopt a plaquette definition of the lattice coupling constant according

to (for zero flavours):

− ln(〈TrU2〉/3) = 4π
3
αV (3.41/a)(1− 1.19αV ) . (4.9)

Once αV (3.41/a) is determined, we can use the equation for the running of αV ,

αV (q) =
4π

2b0 ln(q/ΛV ) + b1 ln (2 ln(q/ΛV ))/b0
(4.10)

to determine αV (q
∗). In the quenched theory, b0 = 11 and b1 = 102. We find aΛV =

0.294 and αV (q
∗) = 0.216.

Since q∗ = 2.52GeV is between the charm and b quark thresholds we perform the
continuum running with four active flavours. From the Particle Data Group (PDG) [38],

we take Λ
(5)

MS
= 237+26−24MeV using two-loop running, and find Λ

(4)

MS
using continuity of

the strong coupling at the b quark threshold. This threshold value is given by mb
satisfying mbMS(mb) = mb. We take mb = 4.25GeV, using the average of the range,

4.1–4.4GeV, quoted by the PDG [38].

The overall renormalisation constant is thus given by:

ZstaticA =
(
α(mb)

α(q∗)

)d{
1− cα(mb)

4π
+
α(q∗)−α(mb)

4π
JA

}
×

×√u0
(
1 +

αV (q
∗)

4π
[4 ln(q∗a)− 19.36− CFλ/2]

)
, (4.11)

where c = 8/3, JA = 0.91 and d = −6/25. Using the inputs given above, we find
ZstaticA = 0.78 . (4.12)

Independent variations of Λ(5) and mb to the ends of the ranges quoted above and

±10% variation in a−1 change this value by 1.3% or less. Changing q∗ to 1/a or π/a
reduces ZstaticA by 13% or raises it by 1.3% respectively.

We close this section by noting that both ZA and Z
static
A are evaluated in the chiral

limit and so do not depend on the light quark mass used in the simulation.

5. Phenomenological implications

We now combine the lattice matrix element with its renormalisation factor to find

the continuum value for g. Since we observe no light quark mass dependence in gL

and evaluated the renormalisation constant in the chiral limit, we multiply the lattice

matrix element in eq. (3.15) by the renormalisation constant in eq. (4.7), to obtain:

g = ZA g
L = 0.42(4)(8) (5.1)

for the coupling of the heavy mesons with the Goldstone bosons.
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Reference g Reference g

[6] 0.32(2) [41] 0.7

[42] 0.39 [5] 0.75-1.0

[3]a 0.44 (16) [43, 44] 0.4-0.7

[45] 0.38

aCombined sum rule + lattice results

Table 2: Recent determinations of the coupling constant g

The direct decay B∗ → Bπ is kinematically forbidden. However, the corresponding

reaction occurs in the D system, where the coupling gD∗Dπ is also related to g by an

expression analogous to eq. (1.10), although the 1/mQ corrections are expected to be

larger in the charm case. A recent analysis [39], incorporating chiral symmetry breaking

corrections plus 1/mc corrections in the HMχ lagrangian and fitting to the branching

ratios for D∗0 → D0π0, D∗+ → D+π0 and D∗s → Dsπ
0 (together with radiative decay

rates for the same D∗ mesons), gives

g =

{
0.27(42)(

5
2)

0.76(3)(21)
. (5.2)

The two fold ambiguity can be resolved by imposing the experimental limit Γ(D∗+) <
0.13MeV [40], which gives g < 0.52 to a good approximation [39].

Other estimates of g are derived using constituent quark models and sum rules.

Starting from the non-relativistic result g = 1, quark models can be improved using

more sophisticated assumptions to describe the quark dynamics inside the meson. In-

dependent estimates are obtained from computing QCD correlation functions in the

framework of sum rules. To give an idea of the range spanned by different determina-

tions, some recent results are listed in tab. 2, while our value together with the average

of other determinations is displayed in fig. 7.

The best estimate from a global analysis of available results, quoted in the review [3],

is

g ' 0.38 (5.3)

with a total uncertainty of 20%; the latter being comparable with the estimated sys-

tematic error from our lattice computation. Not only is the result presented in this

paper compatible with the previous estimates; the systematic error is also competitive

when compared to the above results.

The agreement with other previous estimates is pleasing, but the value of the cou-

pling g can also be used to check the consistency of the heavy quark symmetry predic-

tions in the soft pion limit for the lattice results.

The form factor f1 of the semileptonic decay B → πlν is predicted to have the

expression given earlier in eq. (1.12). This behaviour for f1(q
2) is expected to be valid

near zero recoil (q2 → q2max), where the closest vector resonance dominates, even beyond
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Figure 7: Comparison of various estimates of the coupling g.

the leading approximation in 1/mb in HQET [11]. One also obtains this behaviour from

the heavy meson chiral lagrangian [1, 7, 8, 9], valid for a low momentum pion. It is

perhaps surprising that such a behaviour is found by sum rules to hold reasonably,

at least for the D meson, also at q2 → 0 [6]. In this case the coupling g would fix
the normalisation of the form factor f1 . The extension of the validity of the vector

pole dominance for general values of q2 has no simple theoretical justification. It can

be argued that the contributions from different resonances can lead to a single pole

behaviour; however, in this case, the relation between g and f1(0) would be spoilt.

Lattice data for the semi-leptonic B decay form factors have been fitted assuming

a pole behaviour for f1 [14], yielding f1(0) = 0.44(3), to be compared with

f1(0)|VMD = mB
fπfB∗

g (5.4)

from eq. (1.12). Our determination of g gives f1(0) = 0.50(5)(10), in good agreement

with the direct fit. Such an agreement should not come as a surprise: the lattice data,

after chiral extrapolation, turn out to be close to the end-point of the phase space

kinematically allowed for B → π decays (q2 ' q2max). The lattice normalisation of

the form factor comes therefore from a fit in a region where vector dominance does

hold. Hence, the above agreement should be seen as a consistency check of the two

lattice computations. It is nevertheless important to see that the two results are not

contradictory.
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Assuming a pole form for f1, an independent bound on the value of the residue is

obtained by enforcing the theory to satisfy unitarity [46]. The bound quoted in [46] is

f1(0)m
2
B∗ ≤ 10GeV2 , (5.5)

which translates into
f1(0) ≤ 0.4 . (5.6)

This, again, agrees reasonably with the determination obtained from VMD, using our

value for g, and the one coming from the direct fit of the lattice form factors.

As the lattice determinations will improve in the future, the comparison of the three

results summarised here could become an effective way to constrain the residue at the

B∗ pole.

6. Conclusions

We have shown that the coupling gB∗Bπ, or equivalently the coupling g in the HMχ

lagrangian, may be evaluated on the lattice from the matrix element of the light quark

axial current between B and B∗ states. The value of g enters many phenomenological
quantities of interest calculated in heavy meson chiral perturbation theory, including

the form factors for semileptonic B → π decays mentioned here, as well as B∗ → π

decays and other quantities such as ratios of heavy meson nonleptonic decay constants,

heavy meson mass splittings and radiative decays.

Even the relatively crude estimate obtained here should be interesting for heavy

meson phenomenology, but we believe future more precise lattice computations would

be valuable.
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