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Abstract 

We compute the matrix elements of the operators which contribute to spectator effects in 
inclusive decays of B-mesons. The results agree well with estimates based on the vacuum sat- 
uration (factorization) hypothesis. For the ratio of lifetimes of charged and neutral mesons we 
find ~-(B-)/:r(Bd) = 1.03 :tz 0.02 ± 0.03, where the first error represents the uncertainty in our 
evaluation of the matrix elements, and the second is an estimate of the uncertainty due to the fact 
that the Wilson coefficient functions have only been evaluated at tree-level in perturbation theory. 
This result is in agreement with the experimental measurement. We also discuss the implications 
of our results for the semileptonic branching ratio and the charm yield. @ 1998 Elsevier Science 
B.V. 
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1. In troduct ion  

Inclusive decays of heavy hadrons can be studied in the framework of the heavy-quark 

expansion, in which widths and lifetimes are computed as series in inverse powers 

of the mass of the b-quark [ 1-3] (for recent reviews and additional references see 

Refs. [4,5] ). The leading term of this expansion corresponds to the decay of a free-quark 

and is universal, contributing equally to the lifetimes of all beauty hadrons. Remarkably 

there are no corrections of O ( 1 / m b ) ,  and the first corrections are of O(1/m~)  [6,3]. 

"Spectator effects", i.e. contributions from decays in which a light constituent quark 

also participates in the weak process, enter at third order in the heavy-quark expansion, 

i.e. at O(1/m3b). However, as a result of the enhancement of the phase space for 2 --+ 2 
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body reactions, relative to 1 --+ 3 body decays, the spectator effects are likely to be 
larger than estimates based purely on power counting, and may well be significant. The 
need to evaluate the spectator effects is reinforced by the striking discrepancy between 
the experimental result for the ratio of lifetimes [7], 

T(Ab) 
7-(Bd-----ff = 0.78 4- 0.04, (1) 

and the theoretical prediction, 

7"(Ab____~) = 0.98 + O(1/m3b). (2) 
r ( B d )  

In order to explain this discrepancy in the conventional approach, the higher order terms 
in the heavy-quark expansion, and the spectator effects in particular, would have to 
be surprisingly large. In this paper we compute the matrix elements of the four-quark 
operators needed to evaluate these spectator effects for mesons; a computation of the 
effects for the Ab is in progress and the results will be reported in a future publication. 

The experimental value of the ratio of lifetimes of the charged and neutral B-mesons 
is [7] 

r (B- )  
= 1.06 + 0.04, (3) 

~(B °) 

to be compared to the theoretical prediction 

T(B-) 
1 + O(1/m~,). (4) ~.(B o) - 

Below we determine the contribution to the O(1/m 3) term on the right-hand side of 
Eq. (4) coming from spectator effects, which we believe to be the largest component. 
The same spectator effects also contribute to the semileptonic branching ratio of the B- 
mesons, and to the charm-yield (nc, the average number of charmed particles in decays 
of B-mesons). This will be briefly discussed in Section 5. 

At O( l /m3) ,  the non-perturbative contributions to the spectator effects are contained 
in the matrix elements of the four-quark operators 

Oq A = bL'}'tzqL EIL'yP'bL, 

Oqs_p = bRqL glLbR, 

Tq_A = [~L'yl~Ta qL {Ir'yIZTabL, 

Tq_p = bRTa qL [ILTabR, 

(5) 

(6) 

(7) 

(8) 

where q represents the field of the light quark, and the Ta's are the generators of the 
colour group. Throughout this paper we take these operators to be defined at a renor- 
malization scale mb. The subscripts L and R represent "left" and "right", respectively. 
For mesons, following Ref. [9], we introduce the parameters Bi,2 and 81,2: 
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_ _  f2q H, IB q 
1 (BqlOq_a]Bq)=-- B1, 

2mBq 8 

_ _  f2q mBq 
1 ( nq [ Oq_p j nq> ~ n2, 

2mBq 8 

_ _ 1  ( nq l Z~_ A I Bq) ~ f2qmBq- e l ,  

2rnB~ 8 

_ _ 1  ( Bq I rq_p I Bq) =_ f~ mBo__ e~, 
2mBq 8 
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(9) 

(lO) 

(11) 

(12) 

where fBq is the leptonic decay constant of the m e s o n  Bq (in a normalization in which 
f~r --~ 131 MeV). The introduction of the parameters BI,2 and eL2 is motivated by the 
vacuum saturation (or factorization) approximation [ 10] in which the matrix elements 

of four-quark operators are evaluated by inserting the vacuum inside the current products. 

This leads to Bi = 1 and ei = 0 at some renormalization scale, /z, for the operators. It 

may be argued that the scale at which the factorization approximation holds is different 
from our chosen renormalization scale mb, specifically that if the approximation is valid 

at all then it should hold at a typical hadronic scale of about 1 GeV [ 11 ]. In QCD, in 

the limit of a large number of colours Nc, 

Bi = 0 ( 1 )  and 8i = O(1/Nc). (13) 

In this paper we evaluate the parameters B i and ei in lattice simulations, thus testing the 
validity of the factorization hypothesis. 

The results of our calculations indicate that the vacuum saturation hypothesis is 
(surprisingly?) well satisfied. In the MS renormalization scheme we find 

B1 (mb) = 1 . 0 6 ( 8 ) ,  Bz(mb) = 1 . 0 1 ( 6 ) ,  

el(mb) =--0 .01(3) ,  e2(mb) = --0.01(2) 

(14) 

(15) 

and 

r ( B - )  
- -  - 1.03 -4- 0.02 ± 0.03, (16) 
T(Bd) 

in good agreement with the experimental value in Eq. (3). 

The present calculation is very similar to that of the BB parameter of B-/~ mixing, 
for which several recent simulations have been performed [ 12-14], including one using 

the same configurations used in this study [ 12]. We use the calculations of the BB 
parameter as a comparison and check on our results, both for the perturbative matching 
coefficients and for the evaluation of the matrix elements. In performing this comparison 
we believe that we have found an error in the perturbative calculation. We also stress 
that the feature that the values of the matrix elements of the operators (5 ) - (8 )  are 
close to those expected from the vacuum saturation hypothesis is also present in the 
evaluation of the BB parameter. 
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The plan of the remainder of this paper is as follows. In the next section we derive 
the relation, at one-loop order of perturbation theory, between the operators defined 
in Eqs. ( 5 ) - ( 8 )  and the bare lattice operators whose matrix elements are computed 
directly in lattice simulations. The technical details of the calculation are relegated to 
Appendix A. In Section 3 we present a description of the lattice computation, the results 
of this computation and a discussion of the implications. The comparison of our study 
to that of B°-/~ ° mixing is presented in Section 4 (the discussion of the evaluation of 
the matching coefficients for B-/~ mixing is described in detail in Appendix B). Finally, 
in Section 5 we present our conclusions. 

2. Perturbative matching 

The Wilson coefficient functions of the operators ( 5 ) - ( 8 )  in the OPE for inclusive 
decay rates have been evaluated only at tree-level [9]. At this level of precision it is 
sufficient to compute the matrix elements in any "reasonable" renormalization scheme. 
In this paper we present the results for the matrix elements of the HQET operators in 
the MS scheme at a renormalization scale mb. I In order to obtain these from the matrix 
elements of bare operators in the lattice theory, with cut-off a -1 (where a is the lattice 
spacing), which we compute directly in our simulations, we require the corresponding 
matching coefficients. In this section we present these matching coefficients (at one-loop 
order in perturbation theory); we postpone a detailed description of their evaluation to 
Appendix A. In the following section we will use these coefficients and the computed 
values of the matrix elements of the bare operators to determine the coefficients Bi and 
ei in the MS scheme. 

The coefficients presented in the section were all obtained using local lattice operators 
defined in the tree-level improved SW action [ 15] defined in Eq. (21) below. 

It is convenient to perform the matching in two steps: 
(i) The first step is the evaluation of the coefficients which relate the HQET operators 

in the continuum (MS) and lattice schemes, both defined at the scale a -1 ,  

O C ( a _ l )  = O~(a_ l )  + Ces ~ ~L,  -1 ) ,  (17) 
4---~l-)ijlJj t a 

where the lattice (continuum) operators are labelled by the superfix L (C) .  The 
mixing of operators is such that it is necessary to compute the matrix elements 
of eight lattice operators @ ( a  -1)  (see Table 1, where the coefficients Dij are 

presented). 
(ii) We then evolve the HQET operators in the continuum scheme from renormalization 

scale/x = a - I  to scale ~ = mb, 

0 C (rob) = M i j ( a  -1, mb)O. C ( a - l ) .  (18) 

1 From these it is possible to obtain the matrix elements in any other renormalization scheme using pertur- 
bation theory. 
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Table 1 
Coefficients Dij for the four operators of Eqs. (5)-(8) 
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Dij i= 1 i=2  i=3  i=4  O~ 

J = l  
J = 2  
j = 3  
j = 4 
j = 5  
j = 6  
J = 7  
1=8  

-21.64 - 2.06 0.54 bLY~qL glLy~bL 
- --21.64 2.16 2.40 [~RqL ~ILbR 

9.29 2.43 --10.80 2 .83  bLTIzTaqL (ILT~TabL 
9.72 10.79 11.34 --9.05 bRTaqL glLTabR 

--18.37 - --3.06 - bRy~qR qLy~bL 
36.75 18.37 6.12 3.06 [~RqL glRbL 

- -  13.78 - 6.89 - bRy~TaqR glLy~TabL 
27.56 13.78 -- 13.78 --6.89 bRTaqL glRTabL 

This evolution, sometimes known as "hybrid renormalization", requires knowledge 

of  the anomalous dimension matrix [ 16-18] .  

The matching procedure involves short-distance physics only, and so can be carried 

out in perturbation theory. Lattice perturbation theory generally converges very slowly, 
and therefore, where possible, the matching should be performed non-perturbatively so 
as to minimize these systematic errors. In this letter, however, we do not use a non- 

perturbative renormalization, but, when evaluating the matching coefficients, we do use 
a "boosted" lattice coupling constant in order to partially resum the large higher order 

contributions (e.g. those coming from tadpole graphs). 
In order to obtain the parameters Bi and ei it is also necessary to determine the 

normalization of  the axial current [ 19]. In this case there is a single coefficient ZA 

defined by 

(0] A f t ( a - ' ) ] B )  = ZA ( 0 1 A ~ ( a - ' )  IB),  (19) 

which at one-loop order in perturbation theory is given by 

Ces(a-1) 4 ( 5  1 ) ~_~-1 
Z A = I +  4 ~ 3  - - ~ X l - - X 2 + X 3  " ~ 1 - -  20.0 as  ) , (20) 

where the coefficients xi are defined in Eq. (A.3) and tabulated in Table A.3 in Ap- 

pendix A. Ao c and A0 L are the time components on the axial current in the HQET in 
the MS and lattice schemes respectively, both defined at the scale a -1. Using hybrid 

renormalization one can obtain the axial current in the MS scheme at scale mb. We 

stress again that the results presented for the Bi's and ei's below were obtained with 

both the four quark operators and the axial current defined in the HQET in the MS 
2 scheme at the scale rob. 

In the following section we combine the results of  the matrix elements computed on 
the lattice with the perturbative coefficients presented in this section to obtain the Bi's 
and ei'S. 

2 These differ at one-loop level from the corresponding operators in QCD. 
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3. Lattice computation and results 

The non-perturbative strong interaction effects in spectator contributions to inclusive 
decays are contained in the matrix elements of the eight four-quark operators, O j, given 
in Table 1. We evaluate these matrix elements in a quenched simulation on a 243 x 48 
lattice at /3 = 6.2 using the SW tree-level improved action [ 15], 

S Sw -- S gauge -t- S wils°n - i 2 ~ O(x)F~u(x)oIzuq(x), (21) 
X,/Z,P 

where S gauge and S wils°n are the Wilson gauge and quark actions, respectively. The use 

of this action reduces the errors due to the granularity of the lattice to ones of O(oLsa), 
where a is the lattice spacing. We use the 60 SU(3) gauge-field configurations, and 
the light quark propagators corresponding to hopping parameters K = 0.14144, 0.14226 
and 0.14262 which have been used previously to obtain the B-parameter of B°-B ° 
mixing [ 12] and other quantities required for studies of B-physics. The value of the 
hopping parameter in the chiral limit is given by Kc = 0.14315. The calculation of 
the matrix elements of the operators in Table 1 is very similar to that of the AB = 2 
operators from which the B-parameter is extracted, and we exploit the similarities to 
perform checks on our calculations (see Section 4 and Appendix B). 

The evaluation of the matrix elements requires the computation of two- and three-point 
correlation functions, 

C(tx) =-- ~ ( O l J ( x ) J t ( O )  10}, (22) 
X 

where we have assumed that tx > 0, and 

K( tx, ty) =-- ~-~( 01J(y)Ot(O)Jt (x) I0 ), (23) 
x,y 

where ty > 0 > tx. In Eqs. (22) and (23) j t  and J are interpolating operators which 
can create or destroy a heavy pseudoscalar meson (containing a static heavy quark) and 
Oj is one of the operators whose matrix element we wish to evaluate. In practice we 
choose J to be the fourth component of an axial current. It is generally advantageous 
to "smear" the interpolating operators J and j t  over the spatial coordinates, in order to 
enhance the overlap with the ground state. Following Ref. [ 12] we have used several 
methods of smearing and checked that the results for the matrix elements of Oj are 
independent of the choice of smearing. In this paper we present as our "best" results 
those obtained using a gauge-invariant smearing based on the Jacobi algorithm described 
in Ref. [20]. The smeared heavy-quark field at time t, bS(x, t), is defined by 

bS(x) = ~ M(x,  x~)b(x ~, t), (24) 
X ! 

where 
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N 

M(x,  x') = ~ KsAn(x, x') (25) 
n=0 

and zl is the three-dimensional version of the Laplace operator. The parameter Ks and 
the number of iterations can be used to control the smearing radius, and here we present 
our results for Ks = 0.25 and N = 140 which corresponds to an rms smearing radius 
r0 = 6.4a [21]. The smeared interpolating operator is then chosen to be jS(x) = 
[~S(x)ysq(x), where q is the field of the light quark. The local interpolating operator is 
simply defined to be j r (x )  = [~(x)ysq(x). 

The eight matrix elements (B I O L (0) IB) are determined by computing the ratios: 

4KSS(--tl, t2) (26) 
Rj(t], t2) ~ CLS(_tl)CLS(t2 ) , 

where tl and t2 are positive and sufficiently large to ensure that only the ground 
state contributes to the correlation functions. The indices S and L denote whether the 
interpolating operators are smeared or local. It is convenient to choose both J and j t  to 
be smeared in the three-point function Kj and to evaluate the two-point functions with 
a local operator at the source and a smeared one at the sink. At large time separations 

tl and t 2 ,  

Rj(t,, t2) --, -~z2 (BI O~(0) IB), 

where ZL is given by 

<ol JL(o) IB)  - 2v"Y~ZL. 

(27) 

(28) 

The Rj defined in Eq. (26) contribute directly to the Bi's and the ei'S, apart from 

perturbative matching factors. To see this, note that the leptonic decay constant of the 
B-meson in the static limit (i.e. infinite mass limit for the b-quark) is given by 

f2 _ 2zZz~t, (29) 
mB 

so that 

Rj(tl,t2)--+ m~L(BIoL(o) IB}= ~ ( B I  o L ( 0 ) I B ) ,  (30) 
B B 

which corresponds precisely to the normalization of the Bi's and ei's in Eqs. ( 9 ) - (12 )  
(apart from the matching factors Z j and that of the four-quark operator Oi described 
in Section 2). 

In these computations it is particularly important to establish that the contribution from 
the ground-state has been isolated. The natural way to do this is to look for plateaus, 
i.e. for regions in tl and t2 for which R.i(tl, t2) is independent of tl and t2. Since the 
statistical errors grow fairly quickly with tl,2 our ability to verify the existence of plateaus 
is limited. For example in Fig. 1 we present our results for R.i(tl, t2),  obtained with the 
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J 

I 

,2 

bL",/"qL'~L,-/,abL 
1.5 , . . . . . .  ..,,÷++l l 

0 5 .  I ' I  ' 1 1 1  I t  

2 5 8 11 

bRqL-qLbR 
i i i i i i i i i  ...,+++tt 
I I I I I I l I  I 

2 5 8 11 

I l l l l l l  I 

• ,,++t t 

l a l a l l l  

2 5 8 11 

---gRqr-qRbL 
I I I I t l l l l  

...÷d+ 
I I I I I I I  

2 5 8 11 

I I I I I i i i i i 

c ~  

~: 0.0 

- -  a m a bRT qLqRT bL 

. . . . . . .  i; l i i O l l t l  e """÷÷t 
........ !l 
2 5 8 11 

bRT~T~ qR~L T~TabL 
I I I l l l l  I 

....,÷+tt 
I I I I I I l [ I  

2 5 8 11 2 5 8 11 
distance t2 (tl = 3) 

- 0 . 5  . . . . . . . . . .  
2 5 8 11 

Fig. 1. Results for the Rj, j = 1 . . . . .  8 as a function of  t2 for t] = 3. The value of  the quark mass corresponds 

to K = 0.14226. 

l ight quark mass corresponding to K = 0.14226 as a function of  t2 for tl  = 3. The results 

are consistent  with being constant, but the errors are uncomfortably large for t2 > 5 or so. 

An alternative, and perhaps more convincing, way to confirm that the contribution from 

the ground-state has been isolated is to check that the values of  the Rj are independent  

of  the method of  smearing used to define the smeared interpolating operators. Fol lowing 

Ref. [ 12],  in addition to the gauge invariant prescription for smearing described above, 

we have defined the smeared field in four other ways (having transformed the fields to 

the Coulomb gauge) .  For  these addit ional four cases, M(x,  x t) of  Eq. (25)  is replaced 

by the following: 

Exponent ial  : 

Gaussian : 

Cube : 

DoubleCube : 

M(x,  x') = e x p ( - I x  - x'l/ro), (31)  

M(x,  x ' )  = exp(  - I x  - x'12/r2o), (32)  

3 

M ( x , x ' )  = H O ( r 0  - I x i  - x~l), (33)  
i=l 

3 ( Ixi-fil'  O(2r0 - I x i -  (34)  M(x , x ' )  = H  1 2r0 ] 
i=1 

and we have chosen ro = 5. As an example,  we present in Table 2 the results for the 

Rj(q ,  t2) for t] = 3 and t2 = 3, again for the middle  value of  the three K's, K = 0.14226. 

We take as our best  results those obtained with the gauge invariant smearing, and 

with tl = t2 = 3. After  extrapolating to the chiral l imit we find the following results for 
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Table 2 
Values of the Rj(3, 3) obtained with different smearing methods for a light quark with x = 0.14226 
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Gauge Inv .  Exponential Gauss±an Cube Double cube 

R1(3,3) 1.02(3) 1.03(2) 1.04(3) 1.03(2) 1.07(8) 
R2(3,3) 1.00(2) 1.01(2) 1.01(3) 1.01(2) 1.00(5) 
R3(3,3) 0.00(1) --0.00(1) --0.00(2) --0.00(1) --0.03(3) 
/?4(3,3) 0.00(1) 0.00(1) 0.01(1) 0.00(1) 0.01(2) 
/?5(3,3) --0.99(4) --1.01(3) --1.01(4) --1.00(3) --1.01(7) 
R6(3,3) -0.99(3) --1.00(2) --1.01(3) --1.00(3) --1.01(6) 
R7(3,3) --0.04(2) --0.03(2) --0.04(2) --0.03(2) --0.09(5) 
R8(3,3) --0.00(1) --0.00(1) -0.01(I) --0.01(1) --0.02(2) 

the Rj: 

R 1 ( 3 , 3 )  = 1 . 0 4 ±  0.04, 

R 3 ( 3 , 3 )  = - 0 . 0 1  ± 0.02, 

R 5 ( 3 , 3 )  = --0.97 ± 0.06, 

/?7(3, 3) = --0.03 ± 0.03, 

R2 (3 ,3 )  = 1.00 ± 0.03, 

R4 (3 ,3 )  = - 0 . 0 0 ±  0.01, 

R 6 ( 3 , 3 )  = - 0 . 9 8  ± 0.05, 

R s ( 3 , 3 )  = - 0 . 0 1  ± 0.01. 

(35) 

(36) 

(37) 

(38) 

We now combine these results with the matching coefficients presented in Section 2 

to determine the Bi's arid the 8i's. For  the value of  the lattice coupling constant we take 

one of  the standard definitions of  the boosted coupling: 

OLs(a -1 ) 6(8t<c) 4 
. . . .  0.0105. (39)  

4¢r (47r)2/3 

Using the coefficients from Section 2 we then obtain 

B l ( a  - I )  = (ZA) -2 (1 + - -  

B2(a -1) = (NA) -2 ( l  -~- - -  

e l ( a  -1 ) = (ZA) -2 (1 + - -  

e2(a -~) = (ZA) -2 (1 -]- - -  

as(a-1)D)  Rj = 0 .98 (8 ) ,  
4~r lj  

Ces(a-1)D) Rj = 0 .93 (5 ) ,  
4¢r 2/ 

oG(a -1 ) 
D) Rj = 0 .01 (3 ) ,  

4rr 3j 

Ces(a-1) ) 
4~" D Rj = 0 .00(2) .  

4j 

We now evolve those coefficients to the scale mb, using the relations 

2CF~] B ( a _ l )  _ 2~ -1 
B(mb)= 1+ Nc J Nc e(a )' 

e(mb) = 1 + -~c e,(a-') -- --N~-c B(a - ), 

(40)  

(41)  

where 
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( Ols( a-1) ) 9/213° 
8 ----- \ ces(rnb) - 1 = 0.09(3). (42) 

In estimating B and its uncertainty we have allowed for a conservative variation 
of the parameters around the "central" values (AQCD = 250 MeV, a -1 = 2.9 GeV, 
mb= 4.5 GeV and/3o = 9). We finally obtain 

B l ( m b )  = 1 . 0 6 ( 8 ) ,  B2(mb) = 1 . 0 1 ( 6 ) ,  

el(rob) = --0.01(3),  e2(mb) = --0.01(2).  

(43) 

(44) 

These matrix elements have also been evaluated using QCD sum-rules [22]. These 
authors find Ba (rob) = 0.96(4),  Bz(rnb) = 0.95(2),  el(rob) = --0.14(1) and e2(rnb) = 
--0.08(1),  differing somewhat (particularly for the el'S) from our values. 

Using the results in Eqs. (43) and (44) we obtain the following value for the ratio 
of lifetimes for the neutral and charged B-mesons: 

r(B-) 
- -  - 1 + klB 1 q- k2B2 4- k3el + k482 = 1.03 ± 0.02 ± 0.03, (45) 
r(Bd) 

where the coefficients ki are taken from Ref. [9]. The first error in Eq. (45) is from 
the uncertainty in the values of the matrix elements in Eqs. (43) and (44), whereas 
the second is an estimate of the uncertainty due to our ignorance of the one-loop 
contribution to the Wilson coefficient function in the OPE (this was estimated by varying 
the matching scale from mb/2 to 2rob using the procedure described in Ref. [9] ). The 
value in Eq. (45) is in good agreement with the experimental results in Eq. (3).  

There has been a considerable amount of discussion lately as to whether the theoretical 
predictions for the semileptonic branching ratio of the B-meson (BsL) and the charm 
yield are consistent with experimental measurements [23,24,9]. Here we limit our 
discussion to a comment on the implications of our results on these two physical 

quantities. The spectator contributions to BsL and nc take the form 

ABSL,spec = biB1 + b2B2 + b3el -k- b4e2, (46) 

dnc,spec = nlB1 Jr n2B2 q- n3el q- n4e2, (47) 

where the coefficients bi and ni at tree-level are presented explicitly in Ref. [9] (see 
also Refs. [ 11,25,16] ). The uncertainties in the predictions for BsL and nc due to the 
errors in the matrix elements in Eqs. (43) and (44) are small (about 0.1% for both 
BsL and no). Larger uncertainties are due to our ignorance of the one-loop contribution 
to the Wilson coefficient function in the OPE. For example, following the procedure 
described in Ref. [9] with a matching scale/x = mb/2 we find ABSL,spec = 0.3(1)% and 
Anc,spec = 0 . 5 ( 2 ) % ,  whereas for a scale 2rob the corresponding results a r e  ABSL,spe c = 
-0 .1  (1)% and dnc,sp~c = 0.0(1) %. For the charm yield these corrections are negligible 
as expected, and for the semileptonic branching ratio they are small. Nevertheless, it 
would be useful to know the one-loop contribution to the coefficient functions in order 
to eliminate the variation obtained by changing the matching scale. 
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4. B - B  mixing 
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In this section we revisit the phenomenologically important process of B-/~ mixing. 
The computation of the matrix elements of the relevant lattice operators on the same 
gauge configurations has already been presented in Ref. [ 12], and we do not add to 
these lattice computations. We do, however, wish to make two observations: 

(i) The matrix elements of the lattice AB = 2 operators relevant for B-/~ mixing 
factorize with a similar precision to that found for the four-quark operators con- 
sidered in Section 3. Because of the way in which lattice computations are usually 
organized, this property is not as readily manifest for the AB = 2 operators as it 
is for the spectator effects. However, by using colour and spin Fierz identities, we 
demonstrate that the values of the matrix elements of the lattice AB = 2 operators 
are very close to those expected using factorization. Some of our observations 
have already been noted in Ref. [ 14], where the Wilson formulation for the light 
quarks was used. We extend this investigation of factorization, and show that each 
contribution to the matrix elements (i.e. each Wick contraction) is close to the 
estimated value obtained using the factorization and vacuum saturation hypothesis. 

(ii) We believe that there is an error in the published value of the matching factors 
for the AB = 2 operators using the SW action for the light quarks. We discuss 
this in some detail in Appendix B; in this section we briefly comment on the 
consequences of this error. 

We now consider these two observations in turn. 

4.1. Factorization 

In order to determine the B-parameter of B-/~ mixing we need to evaluate the matrix 
elements of the three lattice operators OL, OR and ON defined in Eqs. (B.1)- (B.3)  of 
Appendix B, as well as that of 

Os = bqL bqr. (48) 

We now show that these matrix elements (and related ones) are reproduced remarkably 
accurately by assuming the factorization hypothesis and vacuum saturation. For each of 
these operators (Oj )  we define the ratio R j ( t l ,  t2) analogously to Eq. (26) as follows: 

3 Kss(tl,t2) 
R.i(tl ,  t2) = 8 CLs ( - t l )C I "S ( t 2 )  ' (49) 

where the correlation functions C and Ki are defined in Eqs. (22) and (23), except that 
in the Kj the operators 0 i are now AB = 2 operators, and the interpolating operators 
destroy a B-meson and create a B-meson. 

We start by explaining explicitly what we mean by factorization (combined with 
vacuum saturation). The evaluation of the B-parameter requires the computation of 
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three-point functions Kj (tl, t2), which are of the form 3 

(0 I~(y)ySb(y) b(O)Fq(O) b(0 )Fq(0 )  gl(X)ySb(x) 10). (50) 

There are four Wick contractions which contribute to the correlation function, and it is 
convenient to track these by introducing a fictitious quantum number, labelled by an 
integer suffix on each field, so that the correlation function is written in the form 

( 0 Igt2(y)ySbl (y) Or, p(O) q4(x)T5b3 ( x )  [ 0 ), (51) 

where 

Or[. =- blFq2 b3/~q4 q- b3Fq4 blFq2 - blFq4 b3/~q2 - [~3Fq2 bl/~q4, " \  (52) 

and F, P are Dirac matrices. The contraction of spinor (a , /3)  and colour (a) indices 
in each bilinear in Eq. (52) is implicit (e.g. blFq2 -a a = bl,~F,,~q2,~). Only contrac- 
tions between fields with the same suffix are allowed, and the four terms in Eq. (52) 
correspond to the four original Wick contractions. For all the operators of interest, by 
using colour and spin Fierz identities, it is possible to rewrite each of the four terms 
into sums of operators of the form (blFtq2) (b3['tq4) and (blFITaq2) (b3["T~q4), for 
some y-matrices F '  and/~'.  In the factorization and vacuum saturation hypothesis 

( B I(bIF'T~q2) ([~3F'T"q4) I B ) ~-- O, (53) 

and 

(B ](b~F'q2) (b3F'q4) I B)  ~ (B [(D1F'qe) IO)(OI(D3P'q4)IB ). (54) 

Lorentz invariance implies that each of the matrix elements on the right-hand side of 
Eq. (54) vanishes or is proportional to the leptonic decay constant fn .  

We now consider each of the operators in turn: 
• OL and OR: The factor of 3/8 in Eq. (49) was chosen so that the factorization 

hypothesis gives Rc = RR = 1. Numerically we find 

RL(3, 3) + RR(3, 3) = 0.95 4-0.03. (55) 
2 

• Os: Lorentz invariance implies that the matrix element ( B ]bo-Z'~(1 - y5)q] 0) 
vanishes. Using this fact we deduce that factorization implies that Rs "~ 5/8. The 
numerical result for Rs is 0.60(3), in very good agreement with the estimate based 
on factorization. 

• ON: Finally factorization implies that RN ~-~ 1, in good agreement with the numer- 
ical value 0.97(4). 

In order to illustrate further that the numerical results quoted above are in agreement 
with expectations based on factorization and vacuum saturation we present separately in 
Fig. 2 the contributions to each of the ratios from the two independent contractions: 

Ra= (B I(D1r'q2) (b3P'q4) I B)  (56) 

3 The extension of this discussion to include smeared interpolating operators is completely straightforward. 
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and 

R b= (B I(blF'q4) (b3P'qz) iB), (57) 

as well as the total combination 

R = 3 ( 2 R  a - 2Rb) .  (58) 

We see that not only are the values of  the R's quoted above in agreement with expec- 

tations from factorization, but the values of  each of  the R a and R b are also those we 
would expect on this assumption: 

1 a 1 a (59) 

e ~  "- '  1 ,  e b ~ 1 a 1 a _ - 5 R  L, RaN ~ 2, RbN ~-- gR  N. (60) 

In this subsection we have demonstrated that the surprising precision of  predictions for 
matrix elements obtained using the factorization hypothesis in inclusive decays, which 
was discussed in Section 3, also applies to existing results for B-/~ mixing. 

4.2. Match ing  

In this subsection we discuss very briefly the implications of  the error in the published 
value of  the perturbative matching factors in B - B  mixing (see Appendix B).  For 
example, we take method (a) of  Ref. [ 12], in which each of  the ratios Ri is fitted 
separately, and find 
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Bb(mb)  =0.66(2) ,  Bb = ces6/23Bb(mb) = 0.96(3),  (61) 

where Bb(mb)  and Bb are the B-parameter in the MS scheme at scale mb and the 
renormalization group invariant B-parameter, respectively. For the comparison we only 
quote the statistical error. In order to see the effect of the error in the matching coefficient, 
the result in Eq. (61) should be compared with that obtained in Ref. [12] using an 
identical procedure (except for the values of the matching coefficients), 

Bb(mb)  = 0.69(2),  Bb = Ols6/23Bb(mb) = 1.02(3). (62) 

Gimtnez and Martinelli had pointed out that the authors of Ref. [ 12] had used 
matching coefficient which did not include the contributions to the O(a  2) terms in the 
lattice operators which they had used [13]. As explained in Ref. [13], this leads to 
a negligible correction to the B-parameter. The differences in the values in Eqs. (61) 
and (62) is therefore largely due to the error discussed in Appendix B. 

5. Conclusions 

In this paper we have evaluated the matrix elements which contain the non-perturbative 

QCD effects in the spectator contributions to inclusive decays of B-mesons. For the 
MS scheme our principal results are contained in Eqs. (43) and (44). The raw lattice 
results from which the matrix elements in any renormalization scheme can be determined 
are given in Eqs. (35 ) - (38 ) .  

The results for the matrix elements are very close to those which would be expected 
on the basis of factorization and the vacuum saturation hypothesis (particularly for 
the matrix elements of the bare lattice operators). We find the extent to which this 
hypothesis is satisfied to be surprising, but point out in Subsection 4.1 that this was 
also the case for the AB = 2 operators which contribute to B-/3 mixing, whose matrix 
elements have been computed by several groups. 

The calculation described in this paper is the first evaluation, using lattice simulations, 
of the matrix elements of the operators in Eqs. ( 5 ) - ( 8 )  between B-meson states. 
The errors in the results presented in Eqs. (35) - (38)  are reasonably small, and until 
unquenched computations become possible, it is not phenomenologically necessary to 
invest a large effort to reduce the statistical errors in this quenched calculation. It is 
desirable, however, to establish, beyond any doubt, that the ground state meson has been 
isolated and to confirm explicitly the validity of the arguments presented in Section 3 
that this is indeed the case. For this a similar calculation on a larger statistical sample 
will be required. It would also be very useful to evaluate the one-loop contributions to 
the Wilson coefficient functions in the OPE for inclusive decay rates. It is probable that 
these corrections currently represent the largest uncertainty in the inclusive rates. 

A similar study of the matrix elements of the operators Eqs. (35) - (38)  between Ab 
states is in progress. This is particularly important in view of the discrepancy between the 
experimental measurement in Eq. (1) and the theoretical prediction in Eq. (2) for the 
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ratio T ( A b ) / r ( B d ) .  This calculation will help determine whether the discrepancy is due 
to baryonic matrix elements being larger than expected from quark models, or whether 
local quark-hadron duality, assumed in the phenomenology, is not valid. Technically the 
baryonic matrix elements of four-quark operators are more complicated to evaluate than 
mesonic ones, since it is not sufficient to generate the set of light-quark propagators 
from an arbitrary lattice point to the origin. The results will be presented in a following 
publication. 

Appendix A. Evaluation of  the Dij 

In this appendix we discuss the evaluation of the coefficients {Dij} of Eq. (17) for a 
generic four-quark operator Oi. This requires the evaluation of one-loop corrections to 
the matrix elements of the operators {Oi} in both the continuum and lattice schemes, 

Dij = Ci c - Ci~, (1 .1)  

where the superscripts C and L refer to the continuum renormalization scheme (MS) 
and the lattice regularization, respectively. We evaluate the matrix elements between 
four-quark states at zero momentum, regulating the infrared divergences by giving the 
gluon a small mass ,L The coefficients {Dij} do not depend on the infra-red regulator, 
although each of Ci c and C[j are separately infrared divergent. 

We distinguish five categories of one-loop corrections to the generic operator 

o i  - b r a q c t p A b ,  (A.2) 

where A represents both colour and spinor indices: 
(1) Corrections to the external lines. These are proportional to CF, the eigenvalue of 

the quadratic Casimir operator in the fundamental representation (CF = 4/3 for 
the SU(3) colour group), and are independent of F i and Fi. 

(2) Vertex corrections to each of the quark bilinears. 
(3) Corrections in which the gluon couples to both heavy-quark propagators. 
(4) Corrections in which the gluon couples to one light-quark propagator and one 

heavy-quark propagator (at the other vertex). 
(5) Corrections in which the gluon couples to both light-quark propagators. 

In Table A.1 we present the values of the contributions to the Ci c in the MS scheme. 
For the operators O1 and 03, /21 = -½ and g22 = 0, whereas for 02 and 04 /21 = 1 and 
/22 = 0. For a general choice of Oi, ~1,2 depend on the precise definition of the operator 
b(FAo "up) q g/(o'PU/~A) b and on the choice of basis for the y-matrices in D-dimensions. 

The coefficients {Dij} themselves are presented in Table A.2, where the xi's are 
defined as 

xi =-- ci + c~, (A.3) 

and the numerical values of the ci and c[ are tabulated in Table A.3. The contributions 
proportional to the xi's come from the diagrams in the lattice regularization. The com- 
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Table A. 1 
Values of the contributions to C C t . /  

(Category) Ci c O) 

(1) -- log(A2a 2) + ½ 

(2) -- log(a2a 2) + 1 

(3, odd) 21og(a2a 2) 

(4, odd) log(~2a 2) - 1 

(5, odd) -log(A2a 2) + s21 

(5, odd) --31og(A2a 2) +g22 

Cy DFiAq glPAb 
b(TaFATa)qgl[~Ab + DFAqgI(Ta['ATa)b 
D( Ta FiA )q gI( FATa) b 
b( VAT~)q q( pAT~)b + b( TO r a )q ~t( ra l "¢ )b 
b(FATa)qgT(TaFA)b 
~b( FAo',~Ta)qgt(Tao'~ P~)b 

Table A.2 
Values of the contributions to Dij 

j (Category) Dij @ 

1 ( 1 , 2 )  1 

2 (2) l--x2 

3 (2) --x3 

4 (3, odd) -x4 

5 (4, odd) - l - x 5  

6 (4) -x6 

7 (5, odd) g2a-x 7 

8 (5, odd) f22--x 8 

9 (5) --x9 

CF DFAqglFAb 
b(ra FATa)q qPiab + DFAq o(Ta pATa)b 
b(TayOFAyOTa)qglr'ab + bFAqgl(ray°pAy°Ta)b 
b( Ta Fa )q gl( paTa)b 
b( FAT")q gt( P~aTa)b + b( T" FA )q gl( Ta Pa )b 
b( l"AyOT")q q( ['ayOTa)b + b( TayOFa )q ~l( TayO ['A )b 
f)( FATa)q q(Ta pA)b 
-~b( rAo-~"T~)q q(Tao-"~ Pia )b 
1 ~(FA?/~T a )q gl(Tay•pA ) b 

ponents  p ropor t iona l  to the c i would  be  the results i f  the Wi lson  formula t ion  o f  the 

quark  act ion had been  used, and those propor t ional  to c[ are the addi t ional  contr ibut ions 

which  resul t  f rom the use o f  the S W - i m p r o v e d  action. 4 

4 In the notation of Ref. [ 19], the parameters St, and 8s are defined by 

q-~r 

I f (A4(4--A1)--(A4--A5)  0(1 k2 ) )  
~v =- -~ d4k ~ 4A1A22 -- 3 - - - @ - ~  , 

q-Tr 

r2f ~s ~ ~ d4k 4Al(A4 -- A5)(2"1- r2A1) --/142(2 + r2/11) 
441/I 2 
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Table  A .3  

Values o f  the  coeff icients  ct and  c[ .  The i r  express ions  are  g iven  in t e rms  o f  the  var iables  def ined in Refs .  [ 19] 

and  [ 2 6 ]  and  t w o  n e w  var iables  Sv, 8s. T h e  numer i ca l  integrals  h a v e  been  r ecompu ted .  S o m e  o f  t h e m  differ  

s l ight ly  f r o m  the  resul ts  o f  [ 1 9 ] .  

Cl = f + e = 17.89 c[ = f l  _ 2 ( l  + m )  = - -11 .53  

c2 = d l  = 5 .46  c2 t = n = 0 .73  

c3 = d2 = - 7 . 2 2  c~ = h -  2 d  I - q = 0 .33  

c4 = - c  = - 4 . 5 3  c~ = 0 

c5 = - - d l  = - - 5 . 4 6  c~ = - -n  = - -0 .73  

c6 = d2 = - - 7 . 2 2  c~ = c~ = 0 .33  

c 7 = - - v  - -  8v = 4 .85  c~ = 8s = 0 .27  

c 8 = 8 v = 2 . 0 7  c ~ = - v  ! + s - S s + 3 6 L =  10.46 

c9 = 4 w  = - - 4 . 8 4  c~ = 4w t --  2l  --  2 m  + s + 38R = - -4 .88  

Appendix B. AB = 2 operators 

There are many parallels between the calculations of spectator effects in inclusive 
decays, which is the main subject of this paper, and that of the matrix elements of the 
AB = 2 operators which contribute, for example, to the important process of B°-/~ ° 

mixing. Indeed, we have recomputed the matrix elements of the AB = 2 operators and 
compared the results to those in Ref. [ 12] as a check on our procedures and programs. 

The calculation of the matching factors are also similar in the two cases, and we have 

exploited this fact as a check on our perturbative calculation. Since we disagree with 
one of the terms in the results of Ref. [ 19], we briefly discuss the evaluation of the 
matching factors in this appendix. 

We consider a generic AB = 2 operator of the form [~FAq b~aq. The evaluation of the 

various contributions to the Dij's for AB = 2 operators parallels that of the operator Oi 
for spectator effects in inclusive decays defined in Eq. (A.2); specifically, as explicitly 
marked in Table A.2, the coefficients corresponding to j = 4, 5, 7 and 8 change sign, 

whilst the remaining coefficients are the same. Thus from Table A.2 for spectator effects 
we deduce that the Dij's for AB = 2 operators are as given in Table B. 1. The xi's are 
defined in Eq. (A.3) and tabulated in Table A.3. 

We are particularly interested in the operator whose matrix elements contains the 
non-perturbative QCD effects for B°-/~ ° mixing: 

{~FiA q [ ~ A  q ~ OL = [~TP qL bTpqL, (B. 1) 

where the label L denotes "left". In this case the different operators Oj of Table B.1 
reduce to three independent ones, 

OR = b)'PqR b'YpqR, (B.2) 

O N  : 2bqL bqR + 2bqR bqL + b'yPqL bg/pqR "+- [~YPqR bypqL, (B.3) 

as well as OL itself. Step (i) of the matching (see Section 2) is now given by the 
relation 
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Table B. 1 
Values of the contributions to the Dij's for AB = 2 operators 

j (category) D~ B=2~J O~L 

1 1 (1,  2)  2 Xl 

2 (2) l - - x 2  

3 (2) --X3 

4 (3, odd) x 4 

5 (4, odd) l + x 5  

6 (4) -x6  

7 (5, odd) __j'21 ~t- X7 

8 (5, odd) --S22-I-x8 

9 (5) - x 9  

CF-b( F~a )q-b('FiA )q 
-b( ta Fata)q b('F~ )q + "b( FA )q-b( ta'F'~ta)q 
b( tayO FA'yOta)q b( FiA ) q + b( FA)q b( taTO"FA3~Ota)q 
-b( ta FA )q'b( ta FiA )q 
b( FAta)q'b( ta'FA)q + b( taFiA )q-b( FiAta)q 
-b( FA'yOta)q-b( taTO FiA ) q q- -b( ta),O FA )q b( rA~Ota)q 
-b( FAta)q b( Fata)q 
1-~( Fa~t'" ta)q-~( ~A~rU~ ta )q 
l'b( FiaY~ta)q-b( FiAy~ta)q 

q-q/" z+,'/r 

where 

DL = -22 .4 ,  DN = -13 .8  and DR = --3.2. (B.5) 

For the continuum renormalization scheme we have used MS. In 4 - 2e dimensions 

b~/Po4z~ qL D'ypCr~uq L = ( 12 - 2e)byOqr bTpqL, (B.6) 

from which we derive that s2a ÷ J22 = 5 in this scheme. In considering the crossing 
relations between inclusive decays and mixing, we note that in the latter process, one 
of the b fields destroys a quark (so that ~y0 = b) and the other creates an antiquark (so 

that Dy ° = - b ) .  
The results for DL and DN in Eq. (B.5) agree with those in the literature [26], 

whereas that for DR does not (a similar conclusion was reached independently by 
Gim6nez [27] ). In Ref. [26] the quoted result is DR = --5.4. 5 

5 We believe that the reason is that in Eq. (B.16) of Ref. [19] there should be a correction: 

g2 4 g2 4 o ) i ) o ~ t t  ' 
( . . . )  + -6~2  5 (o~ + o / )  ~ ( . . . )  - ~--ggs~2 ~ (~o+ 

Eq. (B.26) should be replaced by 

1 
D / = 5 [ s + 4 J  -- 2 ( l +  m)] 

and that in Table A. 1 

D~ = --0.38 for r = 1. 

These errors are carried forward into successive papers [26,12,13]. Moreover in the same paper, in the 
definition of v I (Eq. (B.17)), the term A 2 at the denominator should be replaced by A2 a. 
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W e  t h a n k  V icen t e  G i m 6 n e z  and  J u a n  Reyes  for  de ta i l ed  c o r r e s p o n d e n c e  concerning 
the  m a t c h i n g  fac tors  a n d  for  p o i n t i n g  out  s o m e  er rors  in  the  ear l ie r  ve r s ion  o f  the  

paper .  W e  a lso  t h a n k  Ca r lo t t a  Pi t tor i ,  G iu l i a  D e  Divi t i is ,  Lu ig i  De l  D e b b i o  and  J o n a t h a n  

F l y n n  for  m a n y  he l p f u l  d i scuss ions .  W e  gra te fu l ly  a c k n o w l e d g e  H a r t m u t  Wi t t ig  and  

o the r  c o l l e a g u e s  f r o m  the  U K Q C D  c o l l a b o r a t i o n  for  e n a b l i n g  us to use  the  g a u g e  

c o n f i g u r a t i o n s  and  q u a r k  p ropaga to r s .  

T h i s  w o r k  was  s u p p o r t e d  b y  P P A R C  gran t s  G R / L 2 9 9 2 7  and  G R / L 5 6 3 2 9 ,  and  E P S R C  

g ran t  G R / K 4 1 6 6 3 .  
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