
M A S S I M O D I P I E R R O

W E B A U T O M AT I O N W I T H P Y T H O N

E X P E R T S 4 S O L U T I O N S

Copyright 2008-2013 by Massimo Di Pierro. All rights reserved.

THE CONTENT OF THIS BOOK IS PROVIDED UNDER THE TERMS OF THE CREATIVE
COMMONS PUBLIC LICENSE BY-NC-ND 3.0.

http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY
USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LI-
CENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty
may be created ore extended by sales representatives or written sales materials. The advice
and strategies contained herein may not be suitable for your situation. You should consult
with a professional where appropriate. Neither the publisher nor author shall be liable for
any loss of profit or any other commercial damages, including but not limited to special,
incidental, consequential, or other damages.

For more information about appropriate use of this material contact:

Massimo Di Pierro

School of Computing

DePaul University

243 S Wabash Ave

Chicago, IL 60604 (USA)

Email: massimo.dipierro@gmail.com

Library of Congress Cataloging-in-Publication Data:

ISBN: XXX-XXX-XXXX

Build Date: October 9, 2014

http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

XXXXXXXXXXX

Contents

1 Introduction 11

2 Linux 13
2.1 Access . 13

2.2 Bash Shell . 14

2.3 Piping stdin and stdout . 16

2.4 Installing prepackaged apps 16

2.5 Emacs in a nutshell . 17

2.6 Installing binary packages . 18

2.7 Git Tutorial . 18

2.7.1 Importing a new project 19

2.7.2 Viewing project history 21

2.7.3 Review of GIT commands 21

3 Python 23
3.0.4 Python vs Java and C++ syntax 25

3.0.5 help, dir . 25

3.1 Python Types . 26

3.1.1 int and long . 27

3.1.2 float and decimal . 27

3.1.3 str . 30

3.1.4 list and array . 31

3.1.5 tuple . 33

3.1.6 dict . 35

3.1.7 set . 36

6

3.2 Python control flow statements 38

3.2.1 for...in . 38

3.2.2 while . 40

3.2.3 if...elif...else . 41

3.2.4 try...except...else...finally 41

3.2.5 def...return . 44

3.2.6 lambda . 46

3.3 Classes . 47

3.3.1 Special methods and operator overloading 49

3.4 File input/output . 50

3.5 import modules . 51

3.5.1 math and cmath . 51

3.5.2 os . 52

3.5.3 sys . 53

3.5.4 datetime . 53

3.5.5 time . 54

3.5.6 urllib and json . 54

3.6 Regular Expressions . 55

4 OS funtions from Python 57

5 BeautifulSoup 61
5.1 Cached Downloads . 63

5.2 A simple web crawler . 63

6 Mechanize 67

7 Fabric 71

8 User Management 75

9 EC2 and OpenStack 77
9.1 EC2 Commad Line API Tools 78

Bibliography 81

CONTENTS 7

Preface

Some of the text in these notes has been collected from Wikipedia and other
online sources.

1

Introduction

Your account:

1 > ssh user<yourid>@140.192.30.237

2

Linux

2.1 Access

In this course you will be using a Linux OS. There are many ways to use
Linux. You can install it on your machine, with or without dual boot (dual
boot is only recommended for experts), you can run it within a virtual
machine (VMWare or VirtualBox for example), or you can access a remote
Linux server.

Assuming you have a Linux account on a remote server you can connect to
it using one of the following ways:

• From another Linux/Unix/Mac terminal:

1 > ssh <username>@<hostname>

for example:

1 > ssh thomas.anderson@the.matrix.net

• From Mac you can follow the same directions as Linux, but first you have
to open Terminal. Search for “Terminal” in “Spotlight”.

• From Windows you need to download PuTTy from http://the.earth.

li/~sgtatham/putty/latest/x86/putty.exe and use the PuTTY GUI to
insert the username and hostname.

• If you have a PythonAnywhere.com account, login there, then click on

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

14 web automation with python

[Consoles] and [Start a new console][Bash]. PythonAnywhere provides a
free Linux account in the cloud and they offer a Bash console shell you
can access via the web browser.

2.2 Bash Shell

The “Bash shell” is a command line processor. It allows you to interactively
type and execute commands and runs inside a text window. There are many
different shells, a.k.a. command line processors and they have a different
syntax. For example the Bash shell understand “bash” commands; the
Python shell understand “Python” commands. Even Windows has a shell
(the “Command Prompt”) which understand Windows commands. For now
you will be using the Bash shell.

Example of commands:

What is my name?

1 > whoami

Make a file called “test.py” and write “print 1” in it:

1 > echo "print 1" > test.py

List all files in the current folder

1 > ls

(* means everything and it is referred to as a wildcard). List all files ending
in .py

1 > ls *.py

List all files ending in .py with more details

1 > ls -l *.py

Run the Python program test.py

1 > python test.py

Delete all files ending in

1 > rm *~

List the name of the current folder

1 > pwd

linux 15

Navigate to the parent of the current folder

1 > cd ..

Navigate to the top folder (also known as file system root)

1 > cd /

Navigate back to your home folder

1 > cd ~

Make a new subfolder

1 > mkdir work

Enter the subfolder

1 > cd work

Create an empty file called “test.txt”

1 > touch test.txt

Step out of a folder

1 > cd ..

Remove a folder and all its content

1 > rm -r work

Print a list of all programs I am running

1 > ps

Print a list of all programs running on this machine by or other user

1 > ps -aux

List all running programs and sort them by resource consumption

1 > top

(press “q” to quit) Start a program and send it in background

1 > python &

(the program will be running but will not IO to console) Kill a program
currently running

1 > kill -9 <pid>

(here <pid> is the process id of the program as listed by top and or ps).

Practice with the above commands.

pwd, ls, cd, mkdir, echo, touch, rm, ps, top.

16 web automation with python

Use them to explore the file system.

Also notice that you can type an incomplete command and press [tab], the
Bash shell will complete the command for you or give you a list of options.
This is called autocomplete.

Some operations require superuser access and the system will refuse to
perform the action otherwise. If you are an administrator of a system, you
can perform an action with administrator by prepending sudo to any shell
command.

For example - DO NOT DO THIS, EVER! - delete everything in the file
system:

1 > cd /

2 > sudo rm -r *

At this point you have the ability to create and browse files, folders, and
running processes. A running program may be constituted of one or more
processes (parallel programs may do more than one thing at once, thus more
than one process).

2.3 Piping stdin and stdout

When using the echo command we used the following example:

1 > echo "print 1" > test.py

Here > is a redirection operator. It takes the output of the echo command
which would normally print to console, and send it to the test.py file.
Similarly, one can redirect standard input which is normally received from
the keyboard, and read it instead from a file using the < operator.

2.4 Installing prepackaged apps

At this point we need to to learn how to install new programs and run them.
How you do this depends on the version of Linux. I will assume Ubuntu. I
will also assume you have superuser access else you will not be able to install
programs.

linux 17

The easiest way to install prepackaged apps for Ubuntu is:

1 > sudo apt-get install <appname>

For example

1 > sudo apt-get install mc

Once installed we can start it with

1 > mc

mc is a useful extension to the Bash shell which allows us to type Bash
commands and, at the same time, browse the file system in a visual way.

We can also re-install existing apps to make sure we have the latest version,
for example:

1 > sudo apt-get install python

Other useful apps are the following

1 > sudo apt-get install zip # for compressing files

2 > sudo apt-get install unzip # for uncompressing

3 > sudo apt-get install tar # for packing files

4 > sudo apt-get install emacs # a file editor

5 > sudo apt-get install python # the python interpreter

6 > sudo apt-get install g++ # the C++ compiler

7 > sudo apt-get install wget # to download stuff from web

8 > sudo apt-get install make # to install source packages

9 > sudo apt-get install build-essential

10 > sudo apt-get install python2.7 # to make sure we have it

11 > sudo apt-get install python-dev # useful development tools

12 > sudo apt-get install git # version control system

2.5 Emacs in a nutshell

Emacs is a text editor. It understand the syntax of many programming
languages and can help with development. It does not have a GUI but only
a text based UI and you can perform various operations using command line
shortcuts. Remember the most important of them all [crtl]+g. if you get into
trouble it brings you back to the edit interface.

You can open a file with:

1 > emacs test.py

18 web automation with python

[crtl]+x+c Save and Exit
[crtl]+s Search
[meta]+< scroll to beginning
[meta]+> scroll to end
[meta]+X command prompt
[tab] automatically re-indent the current line

2.6 Installing binary packages

Some time you may need to install binary packages. They come in the form
of of tar g-zipped files. They look like: <appname>.tar.gz

They installed using the following process:

1 > gunzip <appname>.tar.gz

2 > tar xvf <appname>.tar

3 > cd <appname-folder>

4 > ./configure

5 > make

6 > sudo make install

Here <appname> is the name of the application being installed. <appname-
folder> is the folder created by tar xvf The tar command extracts the
content of the .tar file into a folder. The ./configure step can take additional
command line options and one should consult the documentation of the
specific package for more details. make compiles the application. make install

moves the compiled files in the proper place. If everything worked fine you
can delete the <appname-folder>.

2.7 Git Tutorial

(from the Git man pages)

This tutorial explains how to import a new project into Git, make changes to
it, and share changes with other developers.

If you are instead primarily interested in using Git to fetch a project, for

linux 19

example, to test the latest version, you may prefer to start with the first two
chapters of The Git User’s Manual.

It is a good idea to introduce yourself to Git with your name and public email
address before doing any operation. The easiest way to do so is:

1 > git config --global user.name "Your Name Comes Here"

2 > git config --global user.email you@yourdomain.example.com

2.7.1 Importing a new project

Assume you have a tar-ball project.tar.gz with your initial work. You can
place it under Git revision control as follows.

1 > tar xzf project.tar.gz

2 > cd project

3 > git init

Git will reply with:

1 Initialized empty Git repository in .git/

You’ve now initialized the working directory–you may notice a new directory
created, named “.git”.

Next, tell Git to take a snapshot of the contents of all files under the current
directory (note the .), with git add:

1 > git add .

This snapshot is now stored in a temporary staging area which Git calls
the “index”. You can permanently store the contents of the index in the
repository with git commit:

1 > git commit

This will prompt you for a commit message. You’ve now stored the first
version of your project in Git.

Making changes Modify some files, then add their updated contents to the
index:

1 > git add file1 file2 file3

You are now ready to commit. You can see what is about to be committed
using git diff with the –cached option:

20 web automation with python

1 > git diff --cached

(Without -cached, git diff will show you any changes that you’ve made but
not yet added to the index.) You can also get a brief summary of the situation
with git status:

1 > git status

2 # On branch master

3 # Changes to be committed:

4 # (use ``git reset HEAD <file>...'' to unstage)

5 #

6 #modified: file1

7 #modified: file2

8 #modified: file3

9 #

If you need to make any further adjustments, do so now, and then add any
newly modified content to the index. Finally, commit your changes with:

1 > git commit

This will again prompt you for a message describing the change, and then
record a new version of the project.

Alternatively, instead of running git add beforehand, you can use

1 > git commit -a

which will automatically notice any modified (but not new) files, add them
to the index, and commit, all in one step.

A note on commit messages: Though not required, it’s a good idea to
begin the commit message with a single short (less than 50 character) line
summarizing the change, followed by a blank line and then a more thorough
description. The text up to the first blank line in a commit message is treated
as the commit title, and that title is used throughout Git. For example, git-
format-patch(1) turns a commit into email, and it uses the title on the Subject
line and the rest of the commit in the body.

Git tracks content not files Many revision control systems provide an add
command that tells the system to start tracking changes to a new file. Git’s
add command does something simpler and more powerful: git add is used
both for new and newly modified files, and in both cases it takes a snapshot
of the given files and stages that content in the index, ready for inclusion in
the next commit.

linux 21

2.7.2 Viewing project history

At any point you can view the history of your changes using

1 > git log

If you also want to see complete diffs at each step, use

1 > git log -p

Often the overview of the change is useful to get a feel of each step

1 > git log --stat --summary

Git is great for collaboration and allows creating and merging branches.
When git projects are hosted on cloud services such as GitHub, you can
send pull requests to other users which they can accept and reject. For more
details consult the official documentation.

2.7.3 Review of GIT commands

3

Python

24 web automation with python

Python is a general-purpose high-level programming language. Its design
philosophy emphasizes programmer productivity and code readability. It
has a minimalist core syntax with very few basic commands and simple
semantics. It also has a large and comprehensive standard library, including
an Application Programming Interface (API) to many of the underlying
operating system (OS) functions. Python provides built-in objects such as
linked lists (list), tuples (tuple), hash tables (dict), arbitrarily long integers
(long), complex numbers, and arbitrary precision decimal numbers.

Python supports multiple programming paradigms, including object-
oriented (class), imperative (def), and functional (lambda) programming.
Python has a dynamic type system and automatic memory management
using reference counting (similar to Perl, Ruby, and Scheme).

Python was first released by Guido van Rossum in 1991[?]. The language has
an open, community-based development model managed by the non-profit
Python Software Foundation. There are many interpreters and compilers that
implement the Python language, including one in Java (Jython), one built on
.Net (IronPython) and one built in Python itself (PyPy). In this brief review,
we refer to the reference C implementation created by Guido.

You can find many tutorials, the official documentation, and library
references of the language on the official Python website. [1]

For additional Python references, we can recommend the books in ref. [?]
and ref. [?].

You may skip this chapter if you are already familiar with the Python
language.

python 25

3.0.4 Python vs Java and C++ syntax

Java/C++ Python
assignment a = b; a = b
comparison if (a == b) if a == b:
loops for(a = 0; a < n; a ++) for a in range(0, n):
block Braces {...} indentation
function f loat f (float a) { def f (a):
function call f (a) f (a)
arrays/lists a[i] a[i]
member a.member a.member
nothing null / void∗ None

As in Java, variables which are primitive types (bool, int, float) are passed by
copy but more complex types, unlike C++, are passed by reference.

3.0.5 help, dir

The Python language provides two commands to obtain documentation
about objects defined in the current scope, whether the object is built-in or
user-defined.

We can ask for help about an object, for example "1":

1 >>> help(1)

2 Help on int object:

3

4 class int(object)

5 | int(x[, base]) -> integer

6 |

7 | Convert a string or number to an integer, if possible. A floating point

8 | argument will be truncated towards zero (this does not include a string

9 | representation of a floating point number!) When converting a string, use

10 | the optional base. It is an error to supply a base when converting a

11 | non-string. If the argument is outside the integer range a long object

12 | will be returned instead.

13 |

14 | Methods defined here:

15 |

16 | __abs__(...)

17 | x.__abs__() <==> abs(x)

26 web automation with python

18 ...

and, since "1" is an integer, we get a description about the int class and all
its methods. Here the output has been truncated because it is very long and
detailed.

Similarly, we can obtain a list of methods of the object "1" with the command
dir:

1 >>> dir(1)

2 ['__abs__', '__add__', '__and__', '__class__', '__cmp__', '__coerce__',

3 '__delattr__', '__div__', '__divmod__', '__doc__', '__float__',

4 '__floordiv__', '__getattribute__', '__getnewargs__', '__hash__', '__hex__',

5 '__index__', '__init__', '__int__', '__invert__', '__long__', '__lshift__',

6 '__mod__', '__mul__', '__neg__', '__new__', '__nonzero__', '__oct__',

7 '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdiv__',

8 '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__',

9 '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__rpow__', '__rrshift__',

10 '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__',

11 '__str__', '__sub__', '__truediv__', '__xor__']

3.1 Python Types

Python is a dynamically typed language, meaning that variables do not have
a type and therefore do not have to be declared. Variables may also change
the type of value they hold through its life. Values, on the other hand, do
have a type. You can query a variable for the type of value it contains:

1 >>> a = 3

2 >>> print(type(a))

3 <type 'int'>

4 >>> a = 3.14

5 >>> print(type(a))

6 <type 'float'>

7 >>> a = 'hello python'

8 >>> print(type(a))

9 <type 'str'>

Python also includes, natively, data structures such as lists and dictionaries.

python 27

3.1.1 int and long

There are two types representing integer numbers, they are int and long.
The difference is int corresponds to the microprocessor’s native bit length.
Typically this is 32 bits and can hold signed integers in range [−231,+231)

while the long type can hold almost any arbitrary integer. It is important that
Python automatically converts one into the other as necessary and you can
mix and match the two types in computations. Here is an example:

1 >>> a = 1024

2 >>> type(a)

3 <type 'int'>

4 >>> b = a**128

5 >>> print(b)

6 20815864389328798163850480654728171077230524494533409610638224700807216119346720

7 59602447888346464836968484322790856201558276713249664692981627981321135464152584

8 82590187784406915463666993231671009459188410953796224233873542950969577339250027

9 68876520583464697770622321657076833170056511209332449663781837603694136444406281

10 042053396870977465916057756101739472373801429441421111406337458176

11 >>> print(type(b))

12 <type 'long'>

Computers represent 32 bit integer numbers by converting them to base 2.
The conversion works in the following way:

1 def int2binary(n, nbits=32):

2 if n<0:

3 return [1 if bit==0 else 0 for bit in int2binary(-n-1,nbits)]

4 bits = [0]*nbits

5 for i in range(nbits):

6 n, bits[i] = divmod(n,2)

7 if n: raise OverflowError

8 return bits

The case n < 0 is called two’s complement and is defined as the value obtained
by subtracting the number from the largest power of two (232 for 32 bits).
Just by looking at the most significative bit one can determine the sign of the
binary number (1 for negative and 0 for zero or positive).

3.1.2 float and decimal

There are two ways to represent decimal numbers in Python. Using the native
double precision (64bits) representation, float, or using the decimal module.

28 web automation with python

Most numerical problems are dealt with simply using float:

1 >>> pi = 3.141592653589793

2 >>> two_pi = 2.0 * pi

The cmath module, described later, contains many math functions that use
with the float type.

Floating point numbers are internally represented as follows:

x = ±m2e (3.1)

where x is the number, m is called mantissa and it is zero or a number in
range [1,2), e is called exponent. The sign, m and e can be computed using
the following algorithm which also writes their representation in binary:

1 def float2binary(x,nm=52,ne=11):

2 if x==0:

3 return 0, [0]*nm, [0]*ne

4 sign,mantissa, exponent = (1 if x<0 else 0),abs(x),0

5 while abs(mantissa)>=2:

6 mantissa,exponent = 0.5*mantissa,exponent+1

7 while 0<abs(mantissa)<1:

8 mantissa,exponent = 2.0*mantissa,exponent-1

9 return sign,int2binary(int(2**nm*(mantissa-1)),nm),int2binary(exponent,ne)

Because the mantissa is stored in a fixed number of bits (11 for a 64

bits floating point number) then exponents smaller than -1022 and larger
than 1023 cannot be represented. An arithmetic operation that returns a
number smaller than 2−1022 ' 10−308 cannot be represented and results
in an Underflow error. An operation that returns a number larger than
21023 ' 10308 also cannot be represented and results in an Overflow error.

Here is an example of Overflow:

1 >>> a = 10.0**200

2 >>> a*a

3 inf

And here is an example of Underflow:

1 >>> a = 10.0**-200

2 >>> a*a

3 0.0

Another problem with finite precision arithmetic is the loss of precision for

python 29

computation. Consider the case of the difference between two numbers with
very different orders of magnitude. In order to compute the difference the
CPU reduces them to the same exponent (the largest of the two) and then
computes the difference in the two mantissas. If two numbers differ for a
factor 2k than the mantissa of the smallest number, in binary, needs to be
shifted by k position thus resulting in a loss of information because the k
least significant bits in the mantissa are ignored. If the difference between
the two numbers is greater than a factor 252 all bits in the mantissa of the
smallest number are ignored and the smallest number becomes completely
invisible.

Below is a practical example that produces a wrong result:

1 >>> a = 1.0

2 >>> b = 2.0**53

3 >>> a+b-b

4 0.0

Simple example of what occurs internally in a processor to add two floating
point numbers together. The IEEE 754 standard states for 32 bit floating point
numbers the exponent has a range of -126 to +127.

1 262 in IEEE 754: 0 10000111 00000110000000000000000 (+ e:8 m:1.0234375)

2 3 in IEEE 754: 0 10000000 10000000000000000000000 (+ e:1 m:1.5)

3 265 in IEEE 754: 0 10000111 00001001000000000000000

To add 262.0 to 3.0 the Exponents must be the same. The exponent of the
lesser number is increased to the exponent of the greater number. In this case
3’s exponent must be increased by 7. Increasing the exponent by 7 means the
mantissa must be shifted 7 binary digits to the right.

1 0 10000111 00000110000000000000000

2 0 10000111 00000011000000000000000 (The implied '1' is also pushed 7 places to the

right)

3 ------------------------------------

4 0 10000111 00001001000000000000000 which is the IEEE 754 format for 265.0

In the case of two numbers where the exponent is greater than the number
of digits in the mantissa the smaller number is shifted right off the end. The
effect is a zero is added to the larger number.

In some cases only some of the bits of the smaller number’s mantissa are lost
an a partial addition occurs.

30 web automation with python

This precision issue is always present but not always obvious. It may consist
of a small discrepancy between the true value and the computed value. This
difference may increase during the computation, in particular in iterative
algorithms, and may be sizable in the result of a complex algorithm.

Python also has a module for decimal floating point arithmetic which allows
decimal numbers to be represented exactly. The class Decimal incorporates a
notion of significant places (unlike hardware based binary floating point, the
decimal module has a user alterable precision):

1 >>> from decimal import Decimal, getcontext

2 >>> getcontext().prec = 28 # set precision

3 >>> Decimal(1) / Decimal(7)

4 Decimal('0.1428571428571428571428571429')

Decimal numbers can be used almost everywhere in place of floating point
number arithmetics but are slower and should be used only where arbitrary
precision arithmetics is required. It does not suffer from the overflow,
underflow, and precision issues described above.

1 >>> from decimal import Decimal

2 >>> a = Decimal(10.0)**300

3 >>> a*a

4 Decimal('1.000000000000000000000000000E+600')

3.1.3 str

Python supports the use of two different types of strings: ASCII strings and
Unicode strings. ASCII strings are delimited by ’...’, "...", ”’...”’, or
"""...""". Triple quotes delimit multiline strings. Unicode strings start with
a u followed by the string containing Unicode characters. A Unicode string
can be converted into an ASCII string by choosing an encoding (for example
UTF8):

1 >>> a = 'this is an ASCII string'

2 >>> b = u'This is a Unicode string'

3 >>> a = b.encode('utf8')

After executing these three commands, the resulting a is an ASCII string
storing UTF8 encoded characters.

It is also possible to write variables into strings in various ways:

python 31

1 >>> print('number is ' + str(3))

2 number is 3

3 >>> print('number is %s' % (3))

4 number is 3

5 >>> print('number is %(number)s' % dict(number=3))

6 number is 3

The final notation is more explicit and less error prone, and is to be preferred.

Many Python objects, for example numbers, can be serialized into strings
using str or repr. These two commands are very similar but produce slightly
different output. For example:

1 >>> for i in [3, 'hello']:

2 ... print(str(i), repr(i))

3 3 3

4 hello 'hello'

For user-defined classes, str and repr can be defined/redefined using the
special operators __str__ and __repr__. These are briefly described later in
this chapter. For more information on the topic, refer to the official Python
documentation [?].

Another important characteristic of a Python string is that it is an iterable
object, similar to a list:

1 >>> for i in 'hello':

2 ... print(i)

3 h

4 e

5 l

6 l

7 o

3.1.4 list and array

A list is a native mutable Python object made of a sequence of arbitrary
objects. Arrays are not native to Python but unlike lists each element must
be of the same type but are computationally faster.

The main methods of a Python lists and arrays are append, insert, and delete.
Other useful methods include count, index, reverse and sort. Note: arrays do
not have a sort method.

1 >>> b = [1, 2, 3]

32 web automation with python

2 >>> print(type(b))

3 <type 'list'>

4 >>> b.append(8)

5 >>> b.insert(2, 7) # insert 7 at index 2 (3rd element)

6 >>> del b[0]

7 >>> print(b)

8 [2, 7, 3, 8]

9 >>> print(len(b))

10 4

11 >>> b.append(3)

12 >>> b.reverse()

13 print(b," 3 appears ", b.count(3), " times. The number 7 appears at index ", b.

index(7))

14 [3, 8, 3, 7, 2] 3 appears 2 times. The number 7 appears at index 3

Lists can be sliced:

1 >>> a= [2, 7, 3, 8]

2 >>> print(a[:3])

3 [2, 7, 3]

4 >>> print(a[1:])

5 [7, 3, 8]

6 >>> print(a[-2:])

7 [3, 8]

and concatenated/joined:

1 >>> a = [2, 7, 3, 8]

2 >>> a = [2, 3]

3 >>> b = [5, 6]

4 >>> print(a + b)

5 [2, 3, 5, 6]

A list is iterable; you can loop over it:

1 >>> a = [1, 2, 3]

2 >>> for i in a:

3 ... print(i)

4 1

5 2

6 3

There is a very common situation for which a list comprehension can be used.
Consider the following code:

1 >>> a = [1,2,3,4,5]

2 >>> b = []

3 >>> for x in a:

4 ... if x % 2 == 0:

5 ... b.append(x * 3)

6 >>> print(b)

python 33

7 [6, 12]

This code clearly processes a list of items, selects and modifies a subset of
the input list, and creates a new result list. This code can be entirely replaced
with the following list comprehension:

1 >>> a = [1,2,3,4,5]

2 >>> b = [x * 3 for x in a if x % 2 == 0]

3 >>> print(b)

4 [6, 12]

Python has a module called array. It provides an efficient array
implementation. Unlike lists, array elements must all be of the same type
and the type must be either a char, short, int, long, float or double. A type of
char, short, int or long may be either signed or unsigned.

1 >>> from array import array

2 >>> a = array('d',[1,2,3,4,5])

3 array('d',[1.0, 2.0, 3.0, 4.0, 5.0])

An array object can be used in the same way as a list but its elements must all
be of the same type, specified by the first argument of the constructor (“d”
for double, “l” for signed long, “f” for float, and “c” for character). For a
complete list of avilable options, refer to the official Python documentation.

Using “array“ over “list“ can be faster but, more importantly, the “array“
storage is more compact for large arrays.

3.1.5 tuple

A tuple is similar to a list, but its size and elements are immutable. If a tuple
element is an object, the object itself is mutable but the reference to the object
is fixed. A tuple is defined by elements separated by a comma and optionally
delimited by round brackets:

1 >>> a = 1, 2, 3

2 >>> a = (1, 2, 3)

The round brakets are required for a tuple of zero elements such as

1 >>> a = () # this is an empty tuple

A trailing comma is required for a one element tuple but not for two or more
elements.

34 web automation with python

1 >>> a = (1) # not a tuple

2 >>> a = (1,) # this is a tuple of one element

3 >>> b = (1,2) # this is a tuple of two elements

Since lists are mutable, this works:

1 >>> a = [1, 2, 3]

2 >>> a[1] = 5

3 >>> print(a)

4 [1, 5, 3]

the element assignment does not work for a tuple:

1 >>> a = (1, 2, 3)

2 >>> print(a[1])

3 2

4 >>> a[1] = 5

5 Traceback (most recent call last):

6 File "<stdin>", line 1, in <module>

7 TypeError: 'tuple' object does not support item assignment

A tuple, like a list, is an iterable object. Notice that a tuple consisting of a
single element must include a trailing comma, as shown below:

1 >>> a = (1)

2 >>> print(type(a))

3 <type 'int'>

4 >>> a = (1,)

5 >>> print(type(a))

6 <type 'tuple'>

Tuples are very useful for efficient packing of objects because of their
immutability. The brackets are often optional. You may easily get each
element of a tuple by assigning multiple variables to a tuple at one time:

1 >>> a = (2, 3, 'hello')

2 >>> (x, y, z) = a

3 >>> print(x)

4 2

5 >>> print(z)

6 hello

7 >>> a = 'alpha', 35, 'sigma' # notice the rounded brackets are optional

8 >>> p, r, q = a

9 print(r)

10 35

python 35

3.1.6 dict

A Python dict-ionary is a hash table that maps a key object to a value object.
For example:

1 >>> a = {'k':'v', 'k2':3}

2 >>> print(a['k'])

3 v

4 >>> print(a['k2'])

5 3

6 >>> 'k' in a

7 True

8 >>> 'v' in a

9 False

You will notice that the format to define a dictionary is the same as JavaScript
Object Notation [JSON]. Dictionaries may be nested:

1 >>> a = {'x':3, 'y':54, 'z':{'a':1,'b':2}}

2 >>> print(a['z'])

3 {'a': 1, 'b': 2}

4 >>> print(a['z']['a'])

5 1

Keys can be of any hashable type (int, string, or any object whose class
implements the __hash__ method). Values can be of any type. Different keys
and values in the same dictionary do not have to be of the same type. If the
keys are alphanumeric characters, a dictionary can also be declared with the
alternative syntax:

1 >>> a = dict(k='v', h2=3)

2 >>> print(a['k'])

3 v

4 >>> print(a)

5 {'h2': 3, 'k': 'v'}

Useful methods are has_key, keys, values, items and update:

1 >>> a = dict(k='v', k2=3)

2 >>> print(a.keys())

3 ['k2', 'k']

4 >>> print(a.values())

5 [3, 'v']

6 >>> a.update({'n1':'new item'}) # adding a new item

7 >>> a.update(dict(n2='newer item')) # alternate method to add a new item

8 >>> a['n3'] = 'newest item' # another method to add a new item

9 >>> print(a.items())

36 web automation with python

10 [('k2', 3), ('k', 'v'), ('n3', 'newest item'), ('n2', 'newer item'), ('n1', 'new

item')]

The items method produces a list of tuples, each containing a key and its
associated value.

Dictionary elements and list elements can be deleted with the command del:

1 >>> a = [1, 2, 3]

2 >>> del a[1]

3 >>> print(a)

4 [1, 3]

5 >>> a = dict(k='v', h2=3)

6 >>> del a['h2']

7 >>> print(a)

8 {'k': 'v'}

Internally, Python uses the hash operator to convert objects into integers, and
uses that integer to determine where to store the value. Using a key that is
not hashable will cause an unhashable type error

1 >>> hash("hello world")

2 -1500746465

3 >>> k = [1,2,3]

4 >>> a = {k:'4'}

5 Traceback (most recent call last):

6 File "<stdin>", line 1, in <module>

7 TypeError: unhashable type: 'list'

3.1.7 set

A set is something between a list and dictionary. It represents a non-ordered
list of unique elements. Elements in a set cannot be repeated. Internally it is
implemented as a hash-table, similar to a set of keys in a dictionary. A set is
created using the set constructor. Its argument can be a list, a tuple, or an
iterator:

1 >>> s = set([1,2,3,4,5,5,5,5]) # notice duplicate elements are removed

2 >>> print(s)

3 set([1,2,3,4,5])

4 >>> s = set((1,2,3,4,5))

5 >>> print(s)

6 set([1,2,3,4,5])

7 >>> s = set(i for i in range(1,6))

8 >>> print(s)

9 set([1, 2, 3, 4, 5])

python 37

Since sets are non-ordered list, appending to the end is not applicable.
Instead of append, add elements to a set using the add method:

1 >>> s = set()

2 >>> s.add(2)

3 >>> s.add(3)

4 >>> s.add(2)

5 >>> print(s)

6 set([2, 3])

Notice that the same element can not be added twice (2 in the example). The
is no exception/error thrown when trying to add the same element more
than once.

Since sets are non-ordered, the order you add items is not necessarily the
order they will be returned.

1 >>> s = set([6,'b','beta',-3.4,'a',3,5.3])

2 >>> print (s)

3 set(['a', 3, 6, 5.3, 'beta', 'b', -3.4])

The set object supports normal set operations like union, intersection, and
difference:

1 >>> a = set([1,2,3])

2 >>> b = set([2,3,4])

3 >>> c = set([2,3])

4 >>> print(a.union(b))

5 set([1, 2, 3, 4])

6 >>> print(a.intersection(b))

7 set([2, 3])

8 >>> print(a.difference(b))

9 set([1])

10 >>> if len(c) == len(a.intersection(c)):

11 ... print("c is a subset of a")

12 ... else:

13 ... print("c is not a subset of a")

14 ...

15 c is a subset of a

to check for membership:

1 >>> 2 in a

2 True

38 web automation with python

3.2 Python control flow statements

Python uses indentation to delimit blocks of code. A block starts with a line
ending with colon and continues for all lines that have a similar or higher
indentation as the next line. For example:

1 >>> i = 0

2 >>> while i < 3:

3 ... print(i)

4 ... i = i + 1

5 0

6 1

7 2

It is common to use four spaces for each level of indentation. It is a good
policy not to mix tabs with spaces, which can result in (invisible) confusion.

3.2.1 for...in

In Python, you can loop over iterable objects:

1 >>> a = [0, 1, 'hello', 'python']

2 >>> for i in a:

3 ... print(i)

4 0

5 1

6 hello

7 python

In the example above you will notice that the loop index, ’i’, takes on the
values of each element in the list [0, 1, ’hello’, ’python’] sequentially. Python
range keyword creates a list of integers automatically, that may be used in a
’for’ loop without manually creating a long list of numbers.

1 >>> a = range(0,5)

2 >>> print(a)

3 [0, 1, 2, 3, 4]

4 >>> for i in a:

5 ... print(i)

6 0

7 1

8 2

9 3

10 4

python 39

The parameters for range(a,b,c) are first parameter is the starting value of
the list. The second parameter is next value if the list contained one more
element. The third parameter is the increment value.

range can also be called with one parameter. It is matched to "b" above with
the first paramater defaulting to 0 and the third to 1.

1 >>> print(range(5))

2 [0, 1, 2, 3, 4]

3 >>> print(range(53,57))

4 [53,54,55,56]

5 >>> print(range(102,200,10))

6 [102, 112, 122, 132, 142, 152, 162, 172, 182, 192]

7 >>> print(range(0,-10,-1))

8 [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

range is very convenient for creating a list of numbers, however as the list
grows in length, the memory required to store the list also grows. A more
efficient option is to use the keyword is xrange. It generates an iterable range
instead of generating the entire list of elements.

1 >>> for i in xrange(0, 4):

2 ... print(i)

3 0

4 1

5 2

6 3

This is equivalent to the C/C++/C#/Java syntax:

1 for(int i=0; i<4; i=i+1) { print(i); }

Another useful command is enumerate, which counts while looping and
returns a tuple consisting of (index, value):

1 >>> a = [0, 1, 'hello', 'python']

2 >>> for (i, j) in enumerate(a): # the () around i, j are optional

3 ... print(i, j)

4 0 0

5 1 1

6 2 hello

7 3 python

There is also a keyword range(a, b, c) that returns a list of integers starting
with the value a, incrementing by c, and ending with the last value smaller
than b, a defaults to 0 and c defaults to 1. xrange is similar but does not
actually generate the list, only an iterator over the list; thus it is better for

40 web automation with python

looping.

You can jump out of a loop using break

1 >>> for i in [1, 2, 3]:

2 ... print(i)

3 ... break

4 1

You can jump to the next loop iteration without executing the entire code
block with continue

1 >>> for i in [1, 2, 3]:

2 ... print(i)

3 ... continue

4 ... print('test')

5 1

6 2

7 3

Python also supports list comprehensions and you can build lists using using
the following syntax:

1 >>> a = [i*i for i in [0, 1, 2, 3]:

2 >>> print(a)

3 [0, 1, 4, 9]

Sometimes you may need a counter to “count” the elements of a list while
looping:

1 >>> a = [e*(i+1) for (i,e) in ['a','b','c','d']]

2 >>> print(a)

3 ['a', 'bb', 'ccc', 'dddd']

3.2.2 while

Comparison operators in Python follow the C/C++/Java operators of ==, !=,
... etc. However Python also accepts the <> operator as not equal to and is
equivalent to !=. Logical operators are and, or and not.

The while loop in Python works much as it does in many other programming
languages, by looping an indefinite number of times and testing a condition
before each iteration. If the condition is False, the loop ends.

1 >>> i = 0

2 >>> while i < 10:

3 ... i = i + 1

python 41

4 >>> print(i)

5 10

The for loop was introduced earlier in this chapter.

There is no loop...until or do...while construct in Python.

3.2.3 if...elif...else

The use of conditionals in Python is intuitive:

1 >>> for i in range(3):

2 ... if i == 0:

3 ... print('zero')

4 ... elif i == 1:

5 ... print('one')

6 ... else:

7 ... print('other')

8 zero

9 one

10 other

elif means "else if". Both elif and else clauses are optional. There can be
more than one elif but only one else statement. Complex conditions can be
created using the not, and and or logical operators.

1 >>> for i in range(3):

2 ... if i == 0 or (i == 1 and i + 1 == 2):

3 ... print('0 or 1')

3.2.4 try...except...else...finally

Python can throw - pardon, raise - Exceptions:

1 >>> try:

2 ... a = 1 / 0

3 ... except Exception, e:

4 ... print('oops: %s' % e)

5 ... else:

6 ... print('no problem here')

7 ... finally:

8 ... print('done')

9 oops: integer division or modulo by zero

10 done

42 web automation with python

If an exception is raised, it is caught by the except clause and the else clause
is not not executed. The finally clause is always executed.

There can be multiple except clauses for different possible exceptions:

1 >>> try:

2 ... raise SyntaxError

3 ... except ValueError:

4 ... print('value error')

5 ... except SyntaxError:

6 ... print('syntax error')

7 syntax error

The finally clause is guaranteed to be executed while the except and else are
not. In the example below the function returns within a try block. This is bad
practice, but it shows that the finally will execute regardless of the reason the
try block is exited.

1 >>> def f(x):

2 ... try:

3 ... r = x*x

4 ... return r # bad practice

5 ... except:

6 ... print("exception occurred %s" % e)

7 ... else:

8 ... print("nothing else to do")

9 ... finally:

10 ... print("Finally we get here")

11 ...

12 >>> y = f(3)

13 Finally we get here

14 >>> print "result is ", y

15 result is 9

For every try you must have either a except or finally while the else is
optional

Here is a list of built-in Python exceptions

1 BaseException

2 +-- SystemExit

3 +-- KeyboardInterrupt

4 +-- Exception

5 +-- GeneratorExit

6 +-- StopIteration

7 +-- StandardError

8 | +-- ArithmeticError

9 | | +-- FloatingPointError

python 43

10 | | +-- OverflowError

11 | | +-- ZeroDivisionError

12 | +-- AssertionError

13 | +-- AttributeError

14 | +-- EnvironmentError

15 | | +-- IOError

16 | | +-- OSError

17 | | +-- WindowsError (Windows)

18 | | +-- VMSError (VMS)

19 | +-- EOFError

20 | +-- ImportError

21 | +-- LookupError

22 | | +-- IndexError

23 | | +-- KeyError

24 | +-- MemoryError

25 | +-- NameError

26 | | +-- UnboundLocalError

27 | +-- ReferenceError

28 | +-- RuntimeError

29 | | +-- NotImplementedError

30 | +-- SyntaxError

31 | | +-- IndentationError

32 | | +-- TabError

33 | +-- SystemError

34 | +-- TypeError

35 | +-- ValueError

36 | | +-- UnicodeError

37 | | +-- UnicodeDecodeError

38 | | +-- UnicodeEncodeError

39 | | +-- UnicodeTranslateError

40 +-- Warning

41 +-- DeprecationWarning

42 +-- PendingDeprecationWarning

43 +-- RuntimeWarning

44 +-- SyntaxWarning

45 +-- UserWarning

46 +-- FutureWarning

47 +-- ImportWarning

48 +-- UnicodeWarning

For a detailed description of each of them, refer to the official Python
documentation.

Any object can be raised as an exception, but it is good practice to raise
objects that extend one of the built-in exception classes.

44 web automation with python

3.2.5 def...return

Functions are declared using def. Here is a typical Python function:

1 >>> def f(a, b):

2 ... return a + b

3 >>> print(f(4, 2))

4 6

There is no need (or way) to specify the type of an argument(s) or the return
value(s). In this example, a function f is defined that can take two arguments.

Functions are the first code syntax feature described in this chapter to
introduce the concept of scope, or namespace. In the above example, the
identifiers a and b are undefined outside of the scope of function f:

1 >>> def f(a):

2 ... return a + 1

3 >>> print(f(1))

4 2

5 >>> print(a)

6 Traceback (most recent call last):

7 File "<pyshell#22>", line 1, in <module>

8 print(a)

9 NameError: name 'a' is not defined

Identifiers defined outside of function scope are accessible within the
function; observe how the identifier a is handled in the following code:

1 >>> a = 1

2 >>> def f(b):

3 ... return a + b

4 >>> print(f(1))

5 2

6 >>> a = 2

7 >>> print(f(1) # new value of a is used)

8 3

9 >>> a = 1 # reset a

10 >>> def g(b):

11 ... a = 2 # creates a new local a

12 ... return a + b

13 >>> print(g(2))

14 4

15 >>> print(a # global a is unchanged)

16 1

If a is modified, subsequent function calls will use the new value of the global
a because the function definition binds the storage location of the identifier

python 45

a, not the value of a itself at the time of function declaration; however, if a

is assigned-to inside function g, the global a is unaffected because the new
local a hides the global value. The external-scope reference can be used in
the creation of closures:

1 >>> def f(x):

2 ... def g(y):

3 ... return x * y

4 ... return g

5 >>> doubler = f(2) # doubler is a new function

6 >>> tripler = f(3) # tripler is a new function

7 >>> quadrupler = f(4) # quadrupler is a new function

8 >>> print(doubler(5))

9 10

10 >>> print(tripler(5))

11 15

12 >>> print(quadrupler(5))

13 20

Function f creates new functions; and note that the scope of the name g is
entirely internal to f. Closures are extremely powerful.

Function arguments can have default values and can return multiple results
as a tuple: (Notice the parentheses are optional and are omitted in the
example.)

1 >>> def f(a, b=2):

2 ... return a + b, a - b

3 >>> x, y = f(5)

4 >>> print(x)

5 7

6 >>> print(y)

7 3

Function arguments can be passed explicitly by name, therefore the order of
arguments specified in the caller can be different than the order of arguments
with which the function was defined:

1 >>> def f(a, b=2):

2 ... return a + b, a - b

3 >>> x, y = f(b=5, a=2)

4 >>> print(x)

5 7

6 >>> print(y)

7 -3

46 web automation with python

Functions can also take a runtime-variable number of arguments. Parameters
that start with * and ** must be the last two parameters. If the ** parameter
is used it must be last in the list. Extra values passed in will be placed
in the *identifier parameter while named values will be placed into the ft
**identifier. Notice that when passing values into the function the unnamed
values must be before any and all named values.

1 >>> def f(a, b, *extra, **extraNamed):

2 ... print "a = ", a

3 ... print "b = ", b

4 ... print "extra = ", extra

5 ... print "extranamed = ", extraNamed

6 >>> f(1, 2, 5, 6, x=3, y=2, z=6)

7 a = 1

8 b = 2

9 extra = (5, 6)

10 extranamed = {'y': 2, 'x': 3, 'z': 6}

Here the first two paramters (1 and 2) are matched with the paramters a and
b while the tuple 5, 6 is placed into extra and the remaining items (which are
in a dictionary format) are placed into extraNamed

In the opposite case, a list or tuple can be passed to a function that requires
individual positional arguments by unpacking them:

1 >>> def f(a, b):

2 ... return a + b

3 >>> c = (1, 2)

4 >>> print(f(*c))

5 3

and a dictionary can be unpacked to deliver keyword arguments:

1 >>> def f(a, b):

2 ... return a + b

3 >>> c = {'a':1, 'b':2}

4 >>> print(f(**c))

5 3

3.2.6 lambda

lambda provides a way to define a short unnamed function:

1 >>> a = lambda b: b + 2

2 >>> print(a(3))

3 5

python 47

The expression "lambda [a]:[b]" literally reads as "a function with arguments
[a] that returns [b]". The lambda expression is itself unnamed, but the function
acquires a name by being assigned to identifier a. The scoping rules for def

apply to lambda equally, and in fact the code above, with respect to a, is
identical to the function declaration using def:

1 >>> def a(b):

2 ... return b + 2

3 >>> print(a(3))

4 5

The only benefit of lambda is brevity; however, brevity can be very convenient
in certain situations. Consider a function called map that applies a function to
all items in a list, creating a new list:

1 >>> a = [1, 7, 2, 5, 4, 8]

2 >>> map(lambda x: x + 2, a)

3 [3, 9, 4, 7, 6, 10]

This code would have doubled in size had def been used instead of lambda.
The main drawback of lambda is that (in the Python implementation) the
syntax allows only for a single expression; however, for longer functions,
def can be used and the extra cost of providing a function name decreases as
the length of the function grows. Just like def, lambda can be used to curry
functions: new functions can be created by wrapping existing functions such
that the new function carries a different set of arguments:

1 >>> def f(a, b): return a + b

2 >>> g = lambda a: f(a, 3)

3 >>> g(2)

4 5

Python functions, created with either def or lambda allow re-factoring of
existing functions in terms of a different set of arguments.

3.3 Classes

Because Python is dynamically typed, Python classes and objects may seem
odd. In fact, member variables (attributes) do not need to be specifically
defined when declaring a class and different instances of the same class
can have different attributes. Attributes are generally associated with the

48 web automation with python

instance, not the class (except when declared as "class attributes", which is
the same as "static member variables" in C++/Java).

Here is an example:

1 >>> class MyClass(object): pass

2 >>> myinstance = MyClass()

3 >>> myinstance.myvariable = 3

4 >>> print(myinstance.myvariable)

5 3

Notice that pass is a do-nothing command. In this case it is used to define a
class MyClass that contains nothing. MyClass() calls the constructor of the class
(in this case the default constructor) and returns an object, an instance of the
class. The (object) in the class definition indicates that our class extends the
built-in object class. This is not required, but it is good practice.

Here is a more involved class with multiple methods:

1 >>> class Complex(object):

2 ... z = 2

3 ... def __init__(self, real=0.0, imag=0.0):

4 ... self.real, self.imag = real, imag

5 ... def magnitude(self):

6 ... return (self.real**2 + self.imag**2)**0.5

7 ... def __add__(self,other):

8 ... return Complex(self.real+other.real,self.imag+other.imag)

9 >>> a = Complex(1,3)

10 >>> b = Complex(2,1)

11 >>> c = a + b

12 >>> print(c.magnitude())

13 5

Functions declared inside the class are methods. Some methods have special
reserved names. For example, __init__ is the constructor. In the example we
created a class to store the real and the imag part of a complex number.
The constructor takes these two variables and stores them into self (not
a keyword but a variable that plays the same role as this in Java and
(*this) in C++. (This syntax is necessary to avoid ambiguity when declaring
nested classes, such as a class that is local to a method inside another class,
something the Python allows but Java and C++ do not).

The self variable is defined by the first argument of each method. They all
must have it but they can use another variable name. Even if we use another

python 49

name, the first argument of a method always refers to the object calling the
method. It plays the same role as the this keyword in the Java and the C++
languages.

__add__ is also a special method (all special methods start and end in double
underscore) and it overloads the + operator between self and other. In the
example, a+b is equivalent to a call to a.__add__(b) and the __add__ method
receives self=a and other=b.

All variables are local variables of the method except variables declared
outside methods which are called class variables, equivalent to C++ static
member variables that hold the same value for all instances of the class.

3.3.1 Special methods and operator overloading

Class attributes, methods, and operators starting with a double underscore
are usually intended to be private (for example to be used internally but not
exposed outside the class) although this is a convention that is not enforced
by the interpreter.

Some of them are reserved keywords and have a special meaning.

For example:

• __len__

• __getitem__

• __setitem__

They can be used, for example, to create a container object that acts like a list:

1 >>> class MyList(object):

2 >>> def __init__(self, *a): self.a = list(a)

3 >>> def __len__(self): return len(self.a)

4 >>> def __getitem__(self, key): return self.a[key]

5 >>> def __setitem__(self, key, value): self.a[key] = value

6 >>> b = MyList(3, 4, 5)

7 >>> print(b[1])

8 4

9 >>> b.a[1] = 7

10 >>> print(b.a)

11 [3, 7, 5]

50 web automation with python

Other special operators include __getattr__ and __setattr__, which define the
get and set methods (getters and setters) for the class, and __add__, __sub__,
__mul__, __div__ which overload arithmetic operators. For the use of these
operators we refer the reader to the chapter on linear algebra where they will
be used to implement algebra for matrices.

3.4 File input/output

In Python you can open and write in a file with:

1 >>> file = open('myfile.txt', 'w')

2 >>> file.write('hello world')

3 >>> file.close()

Similarly, you can read back from the file with:

1 >>> file = open('myfile.txt', 'r')

2 >>> print(file.read())

3 hello world

Alternatively, you can read in binary mode with "rb", write in binary mode
with "wb", and open the file in append mode "a", using standard C notation.

The read command takes an optional argument, which is the number of bytes.
You can also jump to any location in a file using seek.

You can read back from the file with read

1 >>> print(file.seek(6))

2 >>> print(file.read())

3 world

and you can close the file with:

1 >>> file.close()

In the standard distribution of Python, which is known as CPython, variables
are reference-counted, including those holding file handles, so CPython
knows that when the reference count of an open file handle decreases to
zero, the file may be closed and the variable disposed. However, in other
implementations of Python such as PyPy, garbage collection is used instead
of reference counting, and this means that it is possible that there may
accumulate too many open file handles at one time, resulting in an error
before the gc has a chance to close and dispose of them all. Therefore it is

python 51

best to explicitly close file handles when they are no longer needed.

3.5 import modules

The real power of Python is in its library modules. They provide a large and
consistent set of Application Programming Interfaces (APIs) to many system
libraries (often in a way independent of the operating system).

For example, if you need to use a random number generator, you can do:

1 >>> import random

2 >>> print(random.randint(0, 9))

3 5

This prints a random integer in the range of (0,9], 5 in the example. The
function randint is defined in the module random. It is also possible to import
an object from a module into the current namespace:

1 >>> from random import randint

2 >>> print(randint(0, 9))

or import all objects from a module into the current namespace:

1 >>> from random import *
2 >>> print(randint(0, 9))

or import everything in a newly defined namespace:

1 >>> import random as myrand

2 >>> print(myrand.randint(0, 9))

In the rest of this book, we will mainly use objects defined in modules math,
cmath, os, sys, datetime, time and cPickle. We will also use the random module
but we will describe it in a later chapter.

In the following subsections we consider those modules that are most useful.

3.5.1 math and cmath

Here is a sampling of some of the methods availble in the math and cmath

packages.

52 web automation with python

• math.isinf(x) returns true if the floating point number ft x is positive or
negative infinity

• math.isnan(x) returns true if the floating point number ft x is NaN. See
Python documentation or IEEE 754 standards for more information.

• math.exp(x) returns ft e**x

• math.log(x[, base] returns the logarithm of ft x to the optional base. If ft
base is not supplied ft e is assumed.

• math.cos(x),math.sin(x),math.tan(x) returns the cos, sin, tan of the value of
x. x is in radians.

• math.pi, math.e the constants for ft pi and ft e to available precision

3.5.2 os

This module provides an interface to the operating system API. For example:

1 >>> import os

2 >>> os.chdir('..')

3 >>> os.unlink('filename_to_be_deleted')

Some of the os functions, such as chdir, are not thread-safe, for example they
should not be used in a multi-threaded environment.

os.path.join is very useful; it allows the concatenation of paths in an OS-
independent way:

1 >>> import os

2 >>> a = os.path.join('path', 'sub_path')

3 >>> print(a)

4 path/sub_path

System environment variables can be accessed via:

1 >>> print(os.environ)

which is a read-only dictionary.

python 53

3.5.3 sys

The sys module contains many variables and functions, but the used the most
is sys.path. It contains a list of paths where Python searches for modules.
When we try to import a module, Python searches the folders listed in
sys.path. If you install additional modules in some location and want Python
to find them, you need to append the path to that location to sys.path.

1 >>> import sys

2 >>> sys.path.append('path/to/my/modules')

3.5.4 datetime

The use of the datetime module is best illustrated by some examples:

1 >>> import datetime

2 >>> print(datetime.datetime.today())

3 2008-07-04 14:03:90

4 >>> print(datetime.date.today())

5 2008-07-04

Occasionally you may need to time-stamp data based on the UTC time as
opposed to local time. In this case you can use the following function:

1 >>> import datetime

2 >>> print(datetime.datetime.utcnow())

3 2008-07-04 14:03:90

The datetime module contains various classes: date, datetime, time and
timedelta. The difference between two date or two datetime or two time
objects is a timedelta:

1 >>> a = datetime.datetime(2008, 1, 1, 20, 30)

2 >>> b = datetime.datetime(2008, 1, 2, 20, 30)

3 >>> c = b - a

4 >>> print(c.days)

5 1

We can also parse dates and datetimes from strings for example:

1 >>> s = '2011-12-31'

2 >>> a = datetime.datetime.strptime(s,'%Y-%m-%d') #modified

3 >>> print(s.year, s.day, s.month)

4 2011 31 12 #modified

54 web automation with python

Notice that “%Y” matches the 4-digits year, “%m” matches the month as
a number (1-12), “%d” matches the day (1-31), “%H” matches the hour,
“%M” matches the minute, and “%S” matches the second. Check the Python
documentation for more options.

3.5.5 time

The time module differs from date and datetime because it represents time as
seconds from the epoch (beginning of 1970).

1 >>> import time

2 >>> t = time.time()

3 1215138737.571

Refer to the Python documentation for conversion functions between time in
seconds and time as a datetime.

3.5.6 urllib and json

The urllib is a module to download data or a web page from a URL.

1 >>> page = urllib.urlopen('http://www.google.com/')

2 >>> html = page.read()

python 55

3.6 Regular Expressions

The most efficient way of searching for text/patterns in text is by using
regular expressions. For example:

1 import urllib

2 import re

3 html = urllib.urlopen('http://www.depaul.com')

4 regex = re.compile('[\w\.]+@[\w\.]+')

5 emails = regex.findall(html)

6 print emails

re.compile(...) compiles the description of a pattern into an object, regex.
Th findall method of the object finds all expressions matching the compiled
pattern. Here are useful rules:

• ^ means “beginning of text”.

• $ means “and of text of text”.

• . means any character.

• \w means any alphanumeric character or underscore.

• \W means any character not alphanumeric character and not underscore.

• \s means any form of whitespace (space, tab, etc.).

• \S means any char but not a whitespace.

• [...] can be used to build an OR sequence of characters.

• (...) can be used to build a AND sequence of consecutive matching
characters.

• (...)* means any repetition of the sequence (...).

• (...)+ means any non-zero repetition of the sequence (...).

A slash can be used to escape special characters. In a string \ must be escaped
as \\. An actual “\" must therefore be escaped twice \\\\.

Here are some examples of regular expressions (they are all approximations
and oversimplifications):

• Match all email in a document

56 web automation with python

1 re.compile("[\w\.]+@[\w\.]").findall(html)

• Match all tags in HTML

1 re.compile("\<(\w+)").findall(html)

• Match all images sources in HTML

1 re.compile("""\]*src=["'](.*)["']""").findall(html.lower())

• Match all links in HTML

1 re.compile("""\<a [^>]*href=["'](.*)["']""").findall(html.lower())

4

OS funtions from Python

Get current working directory with os.getcwd()

1 print os.getcwd()

Get the status of a file with os.stat()

1 print "Getting the status of: ", os.stat('/usr/bin/python')

Execute a shell command with os.system()

1 os.system('ls -l')

Return the current process id with os.getpid()

1 print os.getpid()

Change the owner and group id of path to the numeric uid and gid with
os.chown()

1 os.chown(path, uid, gid)

Processes in the system run queue averaged over the last 1, 5, and 15 minutes

1 print os.getloadavg()

Check if a path exists with os.path.exists()

1 if os.path.exists("file.txt"):

Create a new directory named ’new_directory’ if it doesn’t exist already"

1 os.path.exists("new_directory") or os.mkdir("new_directory")

Check if the path is a directory or a file with os.path.isdir() and os.path.isfile()

1 path = "/tmp"

58 web automation with python

2 if os.path.isdir(path): print "That's a directory"

3 if os.path.isfile(path): print "That's a file"

Create a directory with os.mkdir()

1 print os.mkdir('new_directory', 0666)

Recursive create directories with os.makedirs()

1 os.makedirs('dir_a/dir_b/dir_c')

Remove a directory with os.rmdir()

1 print os.rmdir('directory')

Recursively remove empty directories with os.removedirs()

1 os.removedirs('dir_a/dir_b/dir_c')

Rename a file with os.rename()

1 print os.rename('/path/to/old/file', '/path/to/new/file')

Rename a file with shutil.move()

1 print shutil.move('/path/to/old/file', '/path/to/new/file')

Rename a file with shutil.copy()

1 print shutil.copy('/path/to/old/file', '/path/to/new/file')

Get the users home directory

1 print os.path.expanduser('~')

Check read permissions with os.access()

1 path = '/tmp/file.txt'

2 print os.access(path, os.R_OK)

Get the users environment with os.environmen()

1 home = os.environ['HOME']

2 print home

Move focus to a different directory with os.chdir()

1 print os.chdir('/tmp')

Print out all directories, sub-directories and files with os.walk()

1 for root, dirs, files in os.walk("/tmp"):

2 print root

3 print dirs

4 print files

Get the last time a directory was accessed with os.path.getatime()

os funtions from python 59

1 os.path.getatime('/tmp')

Get the last time a directory was modified with os.path.getmtime()

1 os.path.getmtime('/tmp')

Get the user ID with os.getuid()

1 if os.getuid() != 0: print "you are not root"

Get the group ID with os.getgid()

1 print os.getgid()

Return the name of the user logged in with os.getlogin()

1 print os.getlogin()

Returns a list of all files in a directory with os.listdir()

1 for filename in os.listdir("/tmp"):

2 print "This is inside /tmp", filename

Get the size of a file with os.path.getsize()

1 os.path.getsize("/tmp/file.txt")

Using Python in your daily work is a good way to automate system
administration tasks, when you feel that your shell scripts are too limited.

5

BeautifulSoup

Regular expressions are useful and indispensable, yet building the proper
expressions to match generic tags, and tag attributes in HTML can be
difficult. A better solution is to use a library designed specifically for
this. One such library is BeautifulSoup. BeautifulSoup does not completely
eliminate the need for regular expressions (in fact is uses regular expressions
and you may have to build some to pass to some BeautifulSoup methods).

You can install BeautifulSoup from the Bash shell with

1 > sudo easy_install BeautifulSoup

From within Python you only need to import one class BeautifulSoup which
we shall rename Soup for brevity:

1 >>> from BeautifulSoup import BeautifulSoup as Soup

Given any help text, for example:

1 >>> html = "<html><p>Para 1<p>Para 2<blockquote>Quote 1<blockquote>Quote 2"

You can use the Soup object to parse it and construct an object representation
of the Document Object Model:

1 >>> soup = Soup(html)

this object can be serialized back into HTML (although it would not produce
the exact same HTML, but an equivalent one):

1 >>> print soup.prettify()

2 <html>

62 web automation with python

3 <p>

4 Para 1

5 </p>

6 <p>

7 Para 2

8 <blockquote>

9 Quote 1

10 <blockquote>

11 Quote 2

12 </blockquote>

13 </blockquote>

14 </p>

15 </html>

The soup object (an instance of BeautifulSoup or BeautifulStoneSoup) is
a deeply-nested, well-connected data structure that corresponds to the
structure of an XML or HTML document. The parser object contains two
other types of objects: Tag objects, which correspond to tags like the <TITLE>
tag and the tags; and NavigableString objects, which correspond to
strings like “Page title” and “This is paragraph”.

The soup object can be used to query the DOM and manipulate it. For
example, you can ask for the first <p/> tag which has an “align” attribute
equal to “center”:

1 >>> p = soup.find('p', align='center')

The output p object is also a BeautifulSoup object. Unless you copy it, any
change to this object will also affect the soup object that contains it.

Given then p object you can retrieve its attributes, for example its id, its class,
its contents, or its serialized content:

1 >>> print p['id']

2 >>> print p['class']

3 >>> print p.contents

4 >>> print p.string

Similarly you can search all the tags in the soup object which match a given
criteria, for example app <p/> tags:

1 >>> soup.findAll('p')

or all tags with an id that matches a regular expression:

1 >>> soup.findAll(id=re.compile("^x"))

An alternative syntax for getting all the <p/> tags is:

beautifulsoup 63

1 >>> tags = soup.p

The ’.’ notation can chained to obtain, for example the title inside the head
of the document:

1 >>> print soup.head.title

You can also replace its contents with:

1 >>> soup.head.title.replaceWith('New Title')

Each BeautifulSoup object is a reference to a portion of the soup document.
Any change will affect the original document.

Notice that any HTML document is a tree, therefore you can traverse the tree
by looking for the parent of a given node, its siblings (next and previous), as
well as the next and previous tags in the DOM structure:

1 >>> print soup.head.parent.name

2 >>> print soup.p.nextSibling

3 >>> print soup.p.previousSibling

4 >>> print soup.p.next

5 >>> print soup.p.previous

5.1 Cached Downloads

1 import urllib2

2 import shelve

3

4 def cached_download(url):

5 d = shelve.open('cached.pages')

6 if url in d:

7 data = d[url]

8 else:

9 try:

10 data = d[url] = urllib2.urlopen(url,timeout=5).read()

11 except:

12 data = None

13 return data

5.2 A simple web crawler

1 # author: Massimo Di Pierro

2 # license: BSD

3 from BeautifulSoup import BeautifulSoup

4 import collections

64 web automation with python

5 import cPickle

6 import urllib2

7 import shelve

8 import socket

9 import re

10

11 TIMEOUT = 10 #seconds

12 EXTENSIONS = ('asp','aspx','php','html','htm')

13 regex_remove = re.compile(

14 '\<script.*?\</script\>|\<style.*?\</style\>|\<!--.*?--\>',re.DOTALL)

15 regex_words = re.compile('[a-zA-Z\-][a-zA-Z\-]+')

16 regex_url = re.compile('(?P<scheme>\w+)\://(?P<host>.*?)(?P<path_info>/.*)')

17

18 def cached_download(url):

19 d = shelve.open('cached.pages')

20 try:

21 data = d[url]

22 except KeyError:

23 try:

24 data = d[url] = urllib2.urlopen(url,timeout=TIMEOUT).read()

25 except (socket.gaierror, socket.error, AttributeError, IOError):

26 return None

27 return data

28

29 def parse_words(html):

30 body = html.find('body')

31 if not body: return set()

32 texts = body.findAll(text=True)

33 texts = map(lambda e:e.string.strip().lower(),texts)

34 texts = filter(lambda e:e,texts)

35 sets = [set(regex_words.findall(t)) for t in texts]

36 words = reduce(lambda a,b:a|b,sets,set())

37 return words

38

39 def normalize_url(new, scheme, host, path_info):

40 new = new.encode('utf8')

41 extension = new.split('?',1)[0].split('#',1)[0].rsplit('.')[-1].lower()

42 if (new.startswith('mailto:') or new.startswith('#') or

43 (not '/' in extension and not extension in EXTENSIONS) or

44 ('://' in new and not new.split('://')[0] in ('http','https'))):

45 return None

46 elif '://' in new:

47 return new

48 elif new.startswith('//'):

49 return scheme+':'+new

50 elif new.startswith('/'):

51 return '%s://%s%s' % (scheme, host, new)

52 else:

53 relative = path_info.rsplit('/',1)[0]

beautifulsoup 65

54 while new.startswith('../'):

55 relative, new = relative.rsplit('/',1)[0], new[3:]

56 return '%s://%s%s/%s' % (scheme, host, relative, new)

57

58 def find_links(html, url = 'http://cdm.depaul.edu/', pattern=re.compile('.*')):

59 match = regex_url.match(url)

60 (scheme, host, path_info) = match.groups()

61 start = '/'.join(url.split('/')[:3])

62 links = html.findAll('a')

63 links = map(lambda link:link.get('href'),links)

64 links = filter(lambda e:e,links)

65 links = map(lambda link:normalize_url(link,scheme,host,path_info),links)

66 follow_links = set(filter(lambda e:e and pattern.match(e),links))

67 ignore_links = set(filter(lambda e:e and e not in follow_links,links))

68 return follow_links, ignore_links

69

70 def crawl(urls = ['http://web2py.com/'], pattern = None,

71 max_links=200, filename='maps.pickle', mode='ignore-check'):

72 if isinstance(urls,str): urls = [urls]

73 maps = collections.defaultdict(set)

74 discovered = set(urls)

75 ignored = set()

76 queue = [url for url in urls]

77 n = 0

78 if pattern is None:

79 pattern = '^'+'|'.join(re.escape(url) for url in urls)

80 if isinstance(pattern,str):

81 pattern = re.compile(pattern)

82 while queue and (max_links is None or n<max_links):

83 url = queue.pop()

84 print '%s: RETRIEVING %s' % (n, url)

85 data = cached_download(url)

86 if data is None:

87 print '%s: INVALID %s' % (n, url)

88 continue

89 html = BeautifulSoup(data)

90 follow_links, ignore_links = find_links(html,url,pattern)

91 words = parse_words(html)

92 for word in words:

93 maps[word].add(url)

94 if mode == 'ignore-log':

95 for url in ignore_links - ignored:

96 print 'IGNORING %s' % url

97 ignored |= ignore_links

98 elif mode == 'ignore-check':

99 for url in ignore_links - ignored:

100 if cached_download(url) is None:

101 print '%s: IGNORING BROKEN %s' % (n, url)

102 else:

66 web automation with python

103 print '%s: IGNORING %s' % (n, url)

104 ignored |= ignore_links

105 for url in follow_links:

106 if url and not url in discovered:

107 queue.append(url)

108 discovered.add(url)

109 print '%s: PROGRESS #urls:%s #words:%s' % (n,len(discovered),len(maps))

110 n += 1

111 cPickle.dump(maps,open(filename,'w'))

112

113 def search(words, filename='maps.pickle'):

114 words = filter(lambda w:len(w)>2,words.lower().split())

115 maps = cPickle.load(open(filename))

116 return reduce(lambda a,b:a&b,[maps[word] for word in words])

117

118 if __name__=='__main__':

119 print crawl('http://depaul.edu/',pattern='^http\://[\w\.]*depaul\.edu(.*)',

120 max_links=None)

121 print search('Python programming')

6

Mechanize

You can install Mechanize from the Bash shell with

1 > sudo easy_install mechanize

Mechanize simulates a web browser and its interaction with the web. You
can start it with:

1 >>> import mechanize

2 >>> br = mechanize.Browser()

It is important to configure your browser so that it can fool third party web
servers. Web servers set restriction and who can access web pages and in
particular they do not like to be visited by robots. You have to pretend your
browser is a “normal” one, for example Firefox:

1 >>> br.set_handle_robots(False)

2 >>> br.addheaders = [('User-agent', 'Firefox')]

Once you have a browser br you can give instructions to it, for example, “visit
the Google web page”:

1 >>> response = br.open("http://www.google.com/")

The response has attributes for example:

1 >>> print response.geturl()

2 http://www.google.com/

or the returned status code:

1 >>> print response.code

2 200

68 web automation with python

or the response headers

1 >>> print response.info().headers

2 ['Date: Wed, 11 Sep 2013 18:09:10 GMT\r\n', 'Expires: -1\r\n', 'Cache-Control:

private, max-age=0\r\n', 'Content-Type: text/html; charset=ISO-8859-1\r\n', '

Set-Cookie: PREF=ID=a53b86f876c89fc9:U=548b6d330fff7040:FF=0:TM=1378922843:LM

=1378922950:S=xPNYhTPc_HwsBqd8; expires=Fri, 11-Sep-2015 18:09:10 GMT; path=/;

domain=.google.com\r\n', 'Server: gws\r\n', 'X-XSS-Protection: 1; mode=block\

r\n', 'X-Frame-Options: SAMEORIGIN\r\n', 'Alternate-Protocol: 80:quic\r\n', '

Connection: close\r\n']

Or a specific header:

1 >>> response.info().getheader('date')

2 'Wed, 11 Sep 2013 18:09:10 GMT'

Or the page content (HTML or binary depending on the data):

1 >>> print response.read()

What is most important is the ability of Mechanize to understand the page.
You can ask it for example to follow a link and get another page. For example,
follow a link that contains text matching a regular expressions:

1 >>> response = br.follow_link(text_regex=".*Google.*")

You can ask if the action was successful and the browser received HTML:

1 >>> assert br.viewing_html()

Because of Mechanize ability to understand HTML, you can ask it to locate
all links in a page:

1 >>> for f in br.links(): print f

2 ...

3 Link(base_url='http://www.google.com/', url='http://www.google.com/intl/en/options/

', text='More ▼', tag='a', attrs=[('class', 'gb3'), ('href', 'http://www

.google.com/intl/en/options/'), ('onclick', 'this.blur();gbar.tg(event);return

!1'), ('aria-haspopup', 'true')])

4 ...

And/or all forms in the page:

1 >>> for f in br.forms(): print f

2 <f GET http://www.google.ca/search application/x-www-form-urlencoded

3 <HiddenControl(ie=ISO-8859-1) (readonly)>

4 <HiddenControl(hl=en) (readonly)>

5 <HiddenControl(source=hp) (readonly)>

6 <TextControl(q=)>

7 <SubmitControl(btnG=Google Search) (readonly)>

8 <SubmitControl(btnI=I'm Feeling Lucky) (readonly)>

9 <HiddenControl(gbv=1) (readonly)>>

mechanize 69

This says: There is only one form on the page/ Hidden field id’s are ie (page
encoding), hl (language code), hp (? don’t know), and gbv (also don’t know).
The only not-hidden field id is q, which is a text input, which is the search
text.

And you can ask it to select a form, fill it, and submit it:

1 >>> formnames = [f.name for f in br.forms()]

2 >>> br.select_form(formnames[0])

or

1 >>> br.select_form(nr=0)

2 >>> br.form['q'] = 'foo'

3 >>> br.submit()

4 >>> response = br.response()

7

Fabric

Fabric is a remote management tool written in Python.

You can install Fabric from the Bash shell with

1 > sudo easy_install fabric

To use Fabric you create a fabfile (just a Python program) which defines the
operations you want to perform for example:

1 from fabric.api import local

2

3 def dir():

4 local('ls -l')

than you run it with:

1 fab -f /path/to/fabfile.py dir

This calls the uptime function inside the "fabfile.py". From now on we will
assume the "fabfile.py" in the user root folder and will omit the -f command
line option.

The local(...) function executes the shell command passed as argument. In
this case the ls -l command. The command in the example is executed on
the local machine but the point of Fabric is to execute the command remotely
and simultaneously on one or more machines. Here is a better example

1 from fabric.api import env, run

2

3 env.hosts = ['192.168.1.100', '192.168.1.101', '192.168.1.102']

72 web automation with python

4 env.user = "you"

5 env.password = "mysecret"

6 env.parallel = True

7

8 def dir():

9 run('ls -l')

Now a call to

1 fab dir

will produce a directory listing from all the machines at the hosts defined in
env.hosts. One can also specify a host using the -H command line option:

1 fab -H 192.168.1.100 dir

You can use -h to find out more about command line options:

1 Usage: fab [options] <command>[:arg1,arg2=val2,host=foo,hosts='h1;h2',...] ...

2

3 Options:

4 -h, --help show this help message and exit

5 -d NAME, --display=NAME

6 print detailed info about command NAME

7 -F FORMAT, --list-format=FORMAT

8 formats --list, choices: short, normal, nested

9 -l, --list print list of possible commands and exit

10 --set=KEY=VALUE,... comma separated KEY=VALUE pairs to set Fab env vars

11 --shortlist alias for -F short --list

12 -V, --version show program's version number and exit

13 -a, --no_agent don't use the running SSH agent

14 -A, --forward-agent forward local agent to remote end

15 --abort-on-prompts abort instead of prompting (for password, host, etc)

16 -c PATH, --config=PATH

17 specify location of config file to use

18 -D, --disable-known-hosts

19 do not load user known_hosts file

20 -f PATH, --fabfile=PATH

21 python module file to import, e.g. '../other.py'

22 --hide=LEVELS comma-separated list of output levels to hide

23 -H HOSTS, --hosts=HOSTS

24 comma-separated list of hosts to operate on

25 -i PATH path to SSH private key file. May be repeated.

26 -k, --no-keys don't load private key files from ~/.ssh/

27 --keepalive=N enables a keepalive every N seconds

28 --linewise print line-by-line instead of byte-by-byte

29 -n M, --connection-attempts=M

30 make M attempts to connect before giving up

31 --no-pty do not use pseudo-terminal in run/sudo

32 -p PASSWORD, --password=PASSWORD

fabric 73

33 password for use with authentication and/or sudo

34 -P, --parallel default to parallel execution method

35 --port=PORT SSH connection port

36 -r, --reject-unknown-hosts

37 reject unknown hosts

38 -R ROLES, --roles=ROLES

39 comma-separated list of roles to operate on

40 -s SHELL, --shell=SHELL

41 specify a new shell, defaults to '/bin/bash -l -c'

42 --show=LEVELS comma-separated list of output levels to show

43 --skip-bad-hosts skip over hosts that can't be reached

44 --ssh-config-path=PATH

45 Path to SSH config file

46 -t N, --timeout=N set connection timeout to N seconds

47 -u USER, --user=USER username to use when connecting to remote hosts

48 -w, --warn-only warn, instead of abort, when commands fail

49 -x HOSTS, --exclude-hosts=HOSTS

50 comma-separated list of hosts to exclude

51 -z INT, --pool-size=INT

52 number of concurrent processes to use in parallel mode

You can also declare and call functions which take arguments. For example
here is a fabfile that allows you to apt-get install packages remotely:

1 from fabric.api import env, sudo

2

3 env.hosts = ['192.168.1.100', '192.168.1.101', '192.168.1.102']

4 env.user = "you"

5 env.password = "mysecret"

6 env.parallel = True

7

8 def install(package):

9 sudo('apt-get -y install %s' % package)

and you can run it with:

1 fab install:python

A nice feature of Fabric is the ability to transfer files between the local and
the remote host. Here is an example to copy a local file and unzip it at each
at the remote destinations:

1 from fabric.api import env, sudo

2 from fabric.operations import put

3

4 env.hosts = ['192.168.1.100', '192.168.1.101', '192.168.1.102']

5 env.user = 'you'

6 env.password = 'ysecret'

7 env.parallel = True

74 web automation with python

8

9 def deploy(filename):

10 put(filename, '/home/you/destination/path')

11 run('unzip /home/you/destination/path/%s' % filename)

which you can use with

1 > fab deploy:myfile.zip

If you need to change folders:

1 from __future__ import with_statement

2 from fabric.api import run

3

4 dir = '/path/to/mydir/

5

6 with cd(dir):

7 run('ls -l')

Fabric can handle errors:

1 from __future__ import with_statement

2 from fabric.api import local, settings, abort

3 from fabric.contrib.console import confirm

4

5 def test():

6 with settings(warn_only=True):

7 result = local('./manage.py test my_app', capture=True)

8 if result.failed and not confirm(``Tests failed. Continue anyway?''):

9 abort(``Aborting at user request.'')

8

User Management

To create a new user:

1 >>> import os

2 >>> import crypt

3 >>> password = 'testpassword'

4 >>> username = 'someuser'

5 >>> encrypted_password = crypt.crypt(password,'22')

6 >>> os.system('useradd -m -p %s %s' % (encrypted_password, username))

(the -m option creates the home user if does not exist).

To give superuser permissions to the new user use shell command visudo to
edit /etc/sudoers file:

1 > export VISUAL=nano; visudo

2 > visudo

3 # users network=(group) commands

4

5 # joe mike and jude can run any command (ALL) from (ALL) terminals

6 joe, mike, jude ALL=ALL

7

8 # tim and ales can run any command from any terminal as memerbs of the www-data

group

9 tim, alex ALL=(www-data) ALL

10

11 # jack can can run any command from any group from any machine in

10.1.2.0/255.255.255.0

12 jack 10.1.2.0/255.255.255.0=(ALL) ALL

13

14 # caty can print from any machine

15 cathy ALL=/usr/sbin/lpc, /usr/bin/lprm

76 web automation with python

16

17 # john can do everything and is not even prompted a password!

18 john ALL=(ALL) NOPASSWD: ALL

To automate remote tasks we want to be able to login into a remote host
wihtout being prompted a password. We can achieve this by creating a
secrtificate for the client machine. On the client machine:

1 > mkdir ~/.ssh

2 > chmod 700 ~/.ssh

3 > ssh-keygen -t rsa -b 4096

it will produce the following and as some questions, you can just press enter:

1 Generating public/private rsa key pair.

2 Enter file in which to save the key (/home/username/.ssh/id_rsa):

3 Enter passphrase (empty for no passphrase):

4 Enter same passphrase again:

5 Your identification has been saved in /home/username/.ssh/id_rsa.

6 Your public key has been saved in /home/username/.ssh/id_rsa.pub.

Then use the following command

1 > ssh-copy-id <username>@<host>

which will automatically ssh into <username>@<host> and appends the local
~/.ssh/id_rsa.pub to the remote ~/.ssh/authorized_keys.

Troubleshooting. You may need to set permission on the remote host:

1 > chmod go-w ~/

2 > chmod 700 ~/.ssh

3 > chmod 600 ~/.ssh/authorized_keys

You may need to tell remote host to add the key:

1 > ssh-add

Now you can:

1 > ssh <username>@<host>

Always no the remote host, makes sure the file /etc/ssh/sshd_config contains:

1 PubkeyAuthentication yes

2 RSAAuthentication yes

You may need to restart the deamon. On the host:

1 sudo /etc/init.d/sshd restart

9

EC2 and OpenStack

A virtual machine (VM) is a software implementation of a machine (i.e. a
computer) that executes programs like a physical machine. Virtual machines
are separated into two major classifications, based on their use and degree of
correspondence to any real machine:

A system virtual machine provides a complete system platform which
supports the execution of a complete operating system (OS).These usually
emulate an existing architecture, and are built with the purpose of either
providing a platform to run programs where the real hardware is not
available for use (for example, executing software on otherwise obsolete
platforms), or of having multiple instances of virtual machines leading
to more efficient use of computing resources, both in terms of energy
consumption and cost effectiveness (known as hardware virtualization, the
key to a cloud computing environment), or both.

A process virtual machine (also, language virtual machine) is designed to
run a single program, which means that it supports a single process. Such
virtual machines are usually closely suited to one or more programming
languages and built with the purpose of providing program portability and
flexibility (amongst other things). An essential characteristic of a virtual
machine is that the software running inside is limited to the resources and
abstractions provided by the virtual machine—it cannot break out of its
virtual environment.

78 web automation with python

Multiple VMs each running their own operating system (called guest
operating system) are frequently used in server consolidation, where
different services that used to run on individual machines to avoid
interference are instead run in separate VMs on the same physical machine.

Software to run virtual machines include VMWare, VirtualBox, and KVM,
and XEN.

There are many web services that allows customers to rent computers on
which to run their own computer applications. The biggest is probably
Amazon EC2.

9.1 EC2 Commad Line API Tools

Display all available ec2 images

ec2-describe-images -x all

Generate a keypair which will be instead of a root password

ec2-create-keypair mb-keypair

Start running a EC2 Instance, this is when billing starts

ec2-run-instances ami-a9fe1bc0 -k mbkeypair

Open up the port 22 for ssh, similary 80 for port 80

ec2-authorize default -p 22

Display list of ec2 instances running

ec2-describe-instances

Terminate an ec2 running instances. This is where billing ends

ec2-terminate-instances ami-a9fe1bc0

OpenStack is a free and open software for creating a cloud infrasture like
amazon EC2. The technology consists of a series of interrelated projects that
control pools of processing, storage, and networking resources throughout
a datacenter, all managed through a dashboard that gives administrators

ec2 and openstack 79

control while empowering its users to provision resources through a web
interface.

Nova is a controller for cloud computing platforms, supports OpenStack and
EC2.

>>> from novaclient import OpenStack

>>> nova = OpenStack(USERNAME, PASSWORD, AUTH_URL)

>>> nova.servers.list()

[<Server: buildslave-ubuntu-9.10>]

>>> nova.flavors.list()

[<Flavor: 256 server>,

<Flavor: 512 server>,

<Flavor: 1GB server>,

<Flavor: 2GB server>,

<Flavor: 4GB server>,

<Flavor: 8GB server>,

<Flavor: 15.5GB server>]

>>> fl = nova.flavors.find(ram=512)

>>> nova.servers.create("my-server", flavor=fl)

<Server: my-server>

For more info: https://github.com/openstack/python-novaclient

Boto is another python library to manage virtualization. Whle Nova is
designed for OpenStack and supports EC2 via a compatibility layer, Boto
is designed for EC2 and supports OpenStack via a compatibility layer.

Both Nova and Boto can run from command line:

> nova boot myUbuntuServer --image "3afe97b2-26dc-49c5-a2cc-a2fc8d80c001" --flavor 6

https://github.com/openstack/python-novaclient

Bibliography

[1] http://www.python.org

[2] http://farmdev.com/talks/unicode/

[3] http://www.crummy.com/software/BeautifulSoup/

[4] http://wwwsearch.sourceforge.net/mechanize/

[5] http://docs.fabfile.org/en/1.8/

[6] https://help.ubuntu.com/community/SSH/OpenSSH/Keys

[7] http://www.garron.me/en/linux/visudo-command-sudoers-file-sudo-default-editor.

html

http://www.python.org
http://farmdev.com/talks/unicode/
http://www.crummy.com/software/BeautifulSoup/
http://wwwsearch.sourceforge.net/mechanize/
http://docs.fabfile.org/en/1.8/
https://help.ubuntu.com/community/SSH/OpenSSH/Keys
http://www.garron.me/en/linux/visudo-command-sudoers-file-sudo-default-editor.html
http://www.garron.me/en/linux/visudo-command-sudoers-file-sudo-default-editor.html

	Introduction
	Linux
	Access
	Bash Shell
	Piping stdin and stdout
	Installing prepackaged apps
	Emacs in a nutshell
	Installing binary packages
	Git Tutorial

	Python
	Python Types
	Python control flow statements
	Classes
	File input/output
	import modules
	Regular Expressions

	OS funtions from Python
	BeautifulSoup
	Cached Downloads
	A simple web crawler

	Mechanize
	Fabric
	User Management
	EC2 and OpenStack
	EC2 Commad Line API Tools

	Bibliography

